In: Math
complete the following activities with these cricket chirp data.
Temperature (F degree) 69.7, 93.3, 84.3, 76.3, 88.6, 82.6, 71.6, 79.6
Chirp in 1 minute 882, 1188, 1104, 864, 1200, 1032, 960, 900
1. Find the regression models (linear and quadratic) for the above data
a. What is the equation for the line of best fit in y=mx+b form?
b. What is the equation for the best fitting quadratic model?
2. Use your models (not the actual data) and calculators to predict the number of chirps at each of the three temperatures.
Linear | Quadratic | |
69.7 | ||
76.3 | ||
88.6 |
1)
(a) Sum of x= 646
Sum of y = 8130
Mean x = 80.75
Mean y = 1016.25
Sum of squares (SSX) = 462.1
Sum of products (SP) = 6747.9
x | y | x-MX = x-80.75 | y-My=y-1016.25 | (x-Mx)2 | (x-Mx)(y-My) |
69.7 | 882 | -11.05 | -134.25 | 122.1025 | 1483.4625 |
93.3 | 1188 | 12.55 | 171.75 | 157.5025 | 2155.4625 |
84.3 | 1104 | 3.55 | 87.75 | 12.6025 | 311.5125 |
76.3 | 864 | -4.45 | -152.25 | 19.8025 | 677.5125 |
88.6 | 1200 | 7.85 | 183.75 | 61.6225 | 1442.4375 |
82.6 | 1032 | 1.85 | 15.75 | 3.4225 | 29.1375 |
71.6 | 960 | -9.15 | -56.25 | 83.7225 | 514.6875 |
79.6 | 900 | -1.15 | -116.25 | 1.3225 | 133.6875 |
Sum of X = 646 | Sum of Y = 8130 | Sum = 462.1 | Sum = 6747.9 |
y = mx + b
Here m = SP/SSX = 6747.9/462.1 = 14.60268
b = (Mean of y) - m(Mean of x) = 1016.25-14.60268*80.75 = -162.91668
Hence required linear equation is :
y = 14.60268 x - 162.91668
(b) y = A+Bx+Cx2
Here C =
B =
A = (Mean of y)-B(Mean of x) -C(Mean of x2)
We get y = 0.446x2 -57.708x +2742.823
2) Linear :y = 14.60268 x - 162.91668
For 69.7, y = 14.60268(69.7)-162.91668 = 855 chirps
For 76.3, y = 14.60268(76.3)-162.91668 = 951 chirps
For 88.6, y = 14.60268(88.6)-162.91668 = 1131 chirps
Quadratic : y = 0.446x2 -57.708x +2742.823
For 69.7, y = 0.446(69.7)2-57.708(69.7)+2742.823 = 887 chirps
For 76.3, y = 0.446(76.3)2-57.708(76.3)+2742.823 = 936 chirps
For 88.6, y = 0.446(88.6)2-57.708(88.6)+2742.823 = 1131 chirps