Question

In: Physics

The x component of the velocity of an object vibrating along the x-axis obeys the equation...

The x component of the velocity of an object vibrating along the x-axis obeys the equation

vx(t) = (0.445 m/s) sin[(25.4 rad/s)t + 0.223]

What is the object’s acceleration when its velocity has a maximum positive value? What is the object’s position x when it has a velocity of -0.200 m/s and a positive acceleration value?

Solutions

Expert Solution

The velocity of particle in SHM is V = (0.445 m/s) sin[(25.4 rad/s)t + 0.223]

a) If the velocity has maximum positive value then the acceleration of the particle is ZERO.

The acceleration of the particle is a = dV/dt = (0.445 x 25.4 m/s2) cos[(25.4 rad/s)t + 0.223]

If V is maximum then [(25.4 rad/s)t + 0.223] = 90o then cos 90o = 0

b) Given velocity is V = - 0.2 m/s and acceleration is positive.

since V = (0.445 m/s) sin[(25.4 rad/s)t + 0.223]

- 0.2 m/s = (0.445 m/s) sin[(25.4 rad/s)t + 0.223]

- 0.45 = sin[(25.4 rad/s)t + 0.223]

- 0.467 rad = [(25.4 rad/s)t + 0.223]

The acceleration and displacement are always opposite. Hence the position of particle is negative.

  

Then X = - (0.445/25.4 m) cos[(25.4 rad/s)t + 0.223]

X = - 0.01752 cos[(25.4 rad/s)t + 0.223]

X = - 0.01752 cos [ - 0.467 rad]

X = - 0.01752 x 0.893 = - 0.0156 m

The position of the object when V = - 0.2 m/s and acceleration is positive is X = - 1.56 cm


Related Solutions

An object moves along the x-axis according to the equation x = 3t ^ 3 - 2t ^ 2 + t along the x-axis.
An object moves along the x-axis according to the equation x = 3t ^ 3 - 2t ^ 2 + t along the x-axis. Find the instantaneous velocity at t = 2 s.A) 29 B) 18 C) 48 D) 43
1D Kinematics Problem: An object moves along the x axis according to the equation x =...
1D Kinematics Problem: An object moves along the x axis according to the equation x = 2.80t2 − 2.00t + 3.00, where x is in meters and t is in seconds. (a) Determine the average speed between t = 2.10 s and t = 3.40 s. (b) Determine the instantaneous speed at t = 2.10 s. Determine the instantaneous speed at t = 3.40 s. (c) Determine the average acceleration between t = 2.10 s and t = 3.40 s....
The position of an object moving along an x axis is given by x = 3.12...
The position of an object moving along an x axis is given by x = 3.12 t - 4.08 t2 + 1.10 t3, where x is in meters and t in seconds. Find the position of the object at the following values of t: (a) 1 s, (b) 2 s, (c) 3 s, and (d) 4 s. (e) What is the object's displacement between t = 0 and t = 4 s? (f) What is its average velocity from t...
The only force acting on a 0.5 kg object as it moves along the x axis...
The only force acting on a 0.5 kg object as it moves along the x axis is given by         F = (4x i – 3x2y j ) N. where x and y in meter. The object starts moving with         velocity of 4 m/s. a) Find the work done by the force as the object moves from x = 1 to x = 3m.  b) What is the speed of the object at x = 3 m? please solve a &...
And object is undergoing simple harmonic motion along the x-axis. Its position is described as a...
And object is undergoing simple harmonic motion along the x-axis. Its position is described as a function of time by x(t) = 2.7 cos(3.1t – 1.2), where x is in meters, the time, t, is in seconds, and the argument of the cosine is in radians. A) Find the amplitude of the simple harmonic motion, in meters. B) What is the value of the angular frequency, in radians per second? C) Determine the position of the object, in meters, at...
An object is undergoing simple harmonic motion along the x-axis. Its position is described as a...
An object is undergoing simple harmonic motion along the x-axis. Its position is described as a function of time by x(t) = 5.5 cos(6.9t – 1.1), where x is in meters, the time, t, is in seconds, and the argument of the cosine is in radians. Part (a) Find the amplitude of the simple harmonic motion, in meters. 14% Part (b) What is the frequency of the motion, in hertz? 14% Part (c) Determine the position of the object, in...
An object with mass m1= 3.00 kg is moving along the positive x-axis with a speed...
An object with mass m1= 3.00 kg is moving along the positive x-axis with a speed v1i=2 m/s straight towards two objects with masses m2= 2.00 kg and m3= 4.00 kg, which are initially at rest. When they collide, object 1 comes to rest and object 2 moves away with a speed of v2f=1.5 m/s at an angle of 50o from the incoming path of object 1. For everything that follows, use a coordinate system where the final path of...
Chapter 2 Question 5: The position of an object moving along an x axis is given...
Chapter 2 Question 5: The position of an object moving along an x axis is given by, where x is in meters and t is in seconds. Find the position of the object at the following values of t: (a) 1 s, (b) 2 s, (c) 3 s, and (d) 4 s. (e) What is the object’s displacement between and s? (f) What is its average velocity for the time interval from s to s? Question 6: A pickup vehicle...
A small object with mass mm = 0.0900 kg moves along the +x-axis. The only force...
A small object with mass mm = 0.0900 kg moves along the +x-axis. The only force on the object is a conservative force that has the potential-energy function U(x)=−αx2+βx3 where α = 4.50 J/m2 and β = 0.300 J/m3. The object is released from rest at small x. 1-When the object is at x = 4.00 m, what is its speed? Express your answer with the appropriate units. 2-When the object is at x = 4.00 m, what is the...
Consider a 2.0-kgkg object that moves along the x axis according to the expression x(t)=ct3x(t)=ct3, where...
Consider a 2.0-kgkg object that moves along the x axis according to the expression x(t)=ct3x(t)=ct3, where cc = +0.230 m/s3m/s3 . Determine the xx component of the object's average velocity during the interval from titi = 0.500 ss to tftf = 1.50 ss. Use all significant digits provided by your calculator? Repeat for the interval from titi = 0.950 ss to tftf = 1.05 ss. Use all significant digits provided by your calculator? Repeat for the interval from titi =...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT