Question

In: Physics

An object is undergoing simple harmonic motion along the x-axis. Its position is described as a...

An object is undergoing simple harmonic motion along the x-axis. Its position is described as a function of time by x(t) = 5.5 cos(6.9t – 1.1), where x is in meters, the time, t, is in seconds, and the argument of the cosine is in radians.

Part (a) Find the amplitude of the simple harmonic motion, in meters.

14% Part (b) What is the frequency of the motion, in hertz?

14% Part (c) Determine the position of the object, in meters, at the time t = 1.7 s.

14% Part (d) What is the object’s velocity, in meters per second, at time t = 1.7?

Part (e) Calculate the object’s acceleration, in meters per second squared, at time t = 1.7.

Part (f) What is the magnitude of the object’s maximum acceleration, in meters per second squared?

Part (g) What is the magnitude of the object’s maximum velocity, in meters per second?

Solutions

Expert Solution


Related Solutions

And object is undergoing simple harmonic motion along the x-axis. Its position is described as a...
And object is undergoing simple harmonic motion along the x-axis. Its position is described as a function of time by x(t) = 2.7 cos(3.1t – 1.2), where x is in meters, the time, t, is in seconds, and the argument of the cosine is in radians. A) Find the amplitude of the simple harmonic motion, in meters. B) What is the value of the angular frequency, in radians per second? C) Determine the position of the object, in meters, at...
particle is in simple harmonic motion along the x axis. The amplitude of the motion is...
particle is in simple harmonic motion along the x axis. The amplitude of the motion is xm. When it is at x = x1, its kinetic energy is K = 5 J and its potential energy (measured with U = 0 at x = 0) is U = 3 J. When it is at x = −1 2x1, the kinetic and potential energies are: A. K = 5 J and U = 3J B. K = 5 J and U...
An object attached to a spring vibrates with simple harmonic motion as described by the figure...
An object attached to a spring vibrates with simple harmonic motion as described by the figure below. (a) For this motion, find the amplitude.   (b) For this motion, find the period. (c) For this motion, find the angular frequency.  (d) For this motion, find the maximum speed  (e) For this motion, find the maximum acceleration.  (f) For this motion, find an equation for its position x in terms of a sine function. 
The position of an object moving along an x axis is given by x = 3.12...
The position of an object moving along an x axis is given by x = 3.12 t - 4.08 t2 + 1.10 t3, where x is in meters and t in seconds. Find the position of the object at the following values of t: (a) 1 s, (b) 2 s, (c) 3 s, and (d) 4 s. (e) What is the object's displacement between t = 0 and t = 4 s? (f) What is its average velocity from t...
An object is excuting simple harmonic motion. Which is a true statement regarding its motion? a....
An object is excuting simple harmonic motion. Which is a true statement regarding its motion? a. its velocity is never zero b. its acceleration is never zero c. its velocity and accelertation are simultaneously zero d. its velocity is zero when tis acceleration is a maximum e. its acceleration is maximum when its velocity is maximum
Simple harmonic motion questions: Part 1. Determine the position in the oscillation where an object in...
Simple harmonic motion questions: Part 1. Determine the position in the oscillation where an object in simple harmonic motion: (Be very specific, and give some reasoning to your answer.) has the greatest speed has the greatest acceleration experiences the greatest restoring force experiences zero restoring force Part 2. Describe simple harmonic motion, including its cause and appearance. (Make sure to use your own words, and be very specific. And a few examples would be helpful.)
The displacement of an object in simple harmonic motion is described by the equation 0.40m*sin(8.9rad/s(t)) +...
The displacement of an object in simple harmonic motion is described by the equation 0.40m*sin(8.9rad/s(t)) + 0.61m*cos(8.9rad/s(t)). A) Determine the position and velocity when t = 0 seconds. B) Determine the maximum displacement of the system. C) Determine the maximum acceleration of the system. D) Determine the velocity of the system at t = 6 seconds.
An object is undergoing uniform circular motion. True or False: A graph of its position oscillates...
An object is undergoing uniform circular motion. True or False: A graph of its position oscillates back and forth, but not with simple harmonic motion. A.) True B.) False
We have a simple harmonic motion that is described by the equation: ? (?) = 0.82cos...
We have a simple harmonic motion that is described by the equation: ? (?) = 0.82cos (0.4? + 0.2) Determine the equation of v (t) and a (t).
Chapter 2 Question 5: The position of an object moving along an x axis is given...
Chapter 2 Question 5: The position of an object moving along an x axis is given by, where x is in meters and t is in seconds. Find the position of the object at the following values of t: (a) 1 s, (b) 2 s, (c) 3 s, and (d) 4 s. (e) What is the object’s displacement between and s? (f) What is its average velocity for the time interval from s to s? Question 6: A pickup vehicle...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT