Question

In: Economics

A certain firm in the beverage industry is faced with the following Cobb-Douglas production function of...

A certain firm in the beverage industry is faced with the following Cobb-Douglas production function of Q left parenthesis L comma K right parenthesis equals 4 L to the power of 0.3 end exponent space K to the power of 0.5 end exponent

a) What is A P subscript L and APK? [6 marks]

b) What is the level of M P subscript L space end subscript and M P subscript K when K = 40 and L = 40 [12 marks]

c) According to the Cobb- Douglas function , calculate the MRTS when K =35 and L = 25 [6 marks]

d) Increase capital with 75% and labour with 75% and see what will happened to output level.

Solutions

Expert Solution

The production function is given as .

(a) The average products of inputs would be as or or , and or or .

(b) The marginal product of labor would be as or or or , and for the given values, we have or or .

The marginal product of capital would be as or or or , and for the given values, we have or or .

(c) The marginal rate of technical substitution would be as or or or , and for the given values, we have or or .

This basically means that for an increase in marginal unit of labor, the capital must decrease by 0.84 units in order to produce same as before, at wehre L=25 and K=35.

(d) Increasing capital and labor by 75%, we have the new production level as or or or , ie , meaning that the output is increased by 56.47%.

As can be seen, since the production technology is decreasing returns to scale, the increase in output (56.47%) is less than the increase in both inputs (75%).


Related Solutions

Consider an economy with the following Cobb-Douglas production function:
Chapter 7, Labor Market Regulation (3 points):• Consider an economy with the following Cobb-Douglas production function:Y =k^1/3L^2/3The economy has 1,000 units of capital and a labor force of 1,000 workers.(a) Derive the equation describing labor demand in this economy as a function of the real wage and the capital stock (Hint: Review Chapter 3.)(b) If the real wage can adjust to equilibrate labor supply and labor demand, what is the real wage? In this equilibrium, what are employment, output, and...
A firm has the following Cobb-Douglas production function: Q = 2L0.5K0.5. The firms pays $50 for...
A firm has the following Cobb-Douglas production function: Q = 2L0.5K0.5. The firms pays $50 for each unit of labor (w) and $100 for each unit of capital (r). a. Consider a short-run problem where the firm's level of capital is fixed at 25 units. In this case, derive an exression that shows the optimal amount of labor (L) the firm would want to use in order to produce Q units of output. b. Use your answer for part (a)...
Suppose a firm has a Cobb-Douglas production function. Show graphically that an increase in the rental...
Suppose a firm has a Cobb-Douglas production function. Show graphically that an increase in the rental rate of capital will increase the amount of labor hired if production remains at the same amount(10pts).
Cobb-Douglas...again Consider the Cobb-Douglas production function function of the form, q(k, l) = k α l...
Cobb-Douglas...again Consider the Cobb-Douglas production function function of the form, q(k, l) = k α l 1−α (a) Determine the relation between α and the marginal product of k and l. For what values of α is the marginal product for each input: (i) increasing, (ii) constant, and, (iii) decreasing. (b) Show that the marginal rate of technical substitution (MRTS) is equal to α 1 − α l k . For what values of α is MRTS decreasing in k?...
Once again, consider the Cobb-Douglas production function ? = ?? ?? ? . a) This time,...
Once again, consider the Cobb-Douglas production function ? = ?? ?? ? . a) This time, derive the conditional input demands ? ∗ (?, ?, ?) and ? ∗ (?, ?, ?) and the associated long-run cost function ?(?, ?, ?) under the assumption that ? + ? = 1. b) Describe the average cost and marginal cost functions. How do they depend on output q and factor prices w and r? Explain. c) Continuing to assume ? + ?...
Consider a firm whose technology can be represented by the following Cobb-Douglas production function: , f(L,K)...
Consider a firm whose technology can be represented by the following Cobb-Douglas production function: , f(L,K) = L0.5K0.5, where L and K represent labor and capital, respectively. In a new diagram, in please draw an isoquant that represent an output level of 20 units. Suppose the price of labor, w, is 1 and the price of capital, r, is 2, and the firm’s budget, C, is 100. Please draw the firm’s isocost line in the same diagram. Can the firm...
Consider the following hypothetical economy. The production function is Cobb-Douglas and labor's share of income is...
Consider the following hypothetical economy. The production function is Cobb-Douglas and labor's share of income is 70%. All values are continuously compounded, annualized growth rates, in percent. Growth in real wages: 2.0 Growth in capital stock: 4.0 Growth in real rental rate of capital: 1.0 a. Using the information provided in the table above, your best estimate of growth in TFP is A. 1.4% B. 2.9% C. Not enough information to answer D. None of the above b. Consider a...
A firm production is represented by the following Cobb-Douglas function: Q = K^1/5 L^4/5. The rental...
A firm production is represented by the following Cobb-Douglas function: Q = K^1/5 L^4/5. The rental rate, r, of capital is given by $240 and the wage rate is $30. a. For a given level of output, what should be the ratio of capital to labor in order to minimize costs? b. How much capital and labor should be used to produce 400 units? How much is the total cost? c. What is the short run total cost if output...
Consider the Cobb-Douglas production function ?=??^??^??^? where ?, ?, ?, ? are positive constants and ?+?+?<1....
Consider the Cobb-Douglas production function ?=??^??^??^? where ?, ?, ?, ? are positive constants and ?+?+?<1. Let ? be the amount of labor, ? the amount of capital, and ? be the amount of other materials used. Let the profit function be defined by ?=?−(??+??+??) where the costs of labor, capital, and other materials are, respectively, ?, ?, and ?. Determine whether second order conditions for profit maximization hold, when the profit function is defined by ?=?−(30?+20?+10?) with ?=5?^0.3?^0.4?^0.2.
3. Suppose that you have a Cobb-Douglas production function of the following form: Y = 0.25K0.24L...
3. Suppose that you have a Cobb-Douglas production function of the following form: Y = 0.25K0.24L 0.40D 0.10 (1) where Y is output, K is capital stock, L is labour, and D is land. (a) What is the interpretation of the individual exponents on K, L and D respectively? (b) What is the interpretation of the sum of these coefficients (i.e., which represents the degree of homogeneity for this function)? Is this function subject to constant, decreasing or increasing returns...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT