// C program for Kruskal's algorithm to find Minimum
Spanning Tree
// of a given connected, undirected and weighted
graph
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// a structure to represent a weighted edge in
graph
struct Edge
{
int src,
dest, weight;
};
// a structure to represent a connected,
undirected
// and weighted graph
struct Graph
{
// V-> Number of
vertices, E-> Number of edges
int V,
E;
// graph is
represented as an array of edges.
// Since the graph is
undirected, the edge
// from src to dest
is also edge from dest
// to src. Both are
counted as 1 edge here.
struct
Edge* edge;
};
// Creates a graph with V vertices and E edges
struct Graph*
createGraph( int V,
int E)
{
struct
Graph* graph = new
Graph;
graph->V =
V;
graph->E =
E;
graph->edge
= new Edge[E];
return
graph;
}
// A structure to represent a subset for
union-find
struct subset
{
int
parent;
int
rank;
};
// A utility function to find set of an element
i
// (uses path compression technique)
int find( struct
subset subsets[], int i)
{
// find root and make
root as parent of i
// (path
compression)
if
(subsets[i].parent != i)
subsets[i].parent
= find(subsets, subsets[i].parent);
return
subsets[i].parent;
}
// A function that does union of two sets of x and
y
// (uses union by rank)
void Union( struct
subset subsets[], int x,
int y)
{
int
xroot = find(subsets, x);
int
yroot = find(subsets, y);
// Attach smaller
rank tree under root of high
// rank tree (Union
by Rank)
if
(subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent
= yroot;
else
if (subsets[xroot].rank >
subsets[yroot].rank)
subsets[yroot].parent
= xroot;
// If ranks are same,
then make one as root and
// increment its rank
by one
else
{
subsets[yroot].parent
= xroot;
subsets[xroot].rank++;
}
}
// Compare two edges according to their
weights.
// Used in qsort() for sorting an array of
edges
int myComp( const
void * a, const
void * b)
{
struct
Edge* a1 = ( struct
Edge*)a;
struct
Edge* b1 = ( struct
Edge*)b;
return
a1->weight > b1->weight;
}
// The main function to construct MST using Kruskal's
algorithm
void KruskalMST( struct
Graph* graph)
{
int V =
graph->V;
struct
Edge result[V]; // Tnis will store the resultant
MST
int e =
0; // An index variable, used for result[]
int i =
0; // An index variable, used for sorted
edges
// Step 1: Sort all
the edges in non-decreasing
// order of their
weight. If we are not allowed to
// change the given
graph, we can create a copy of
// array of
edges
qsort (graph->edge,
graph->E, sizeof (graph->edge[0]),
myComp);
// Allocate memory
for creating V ssubsets
struct
subset *subsets =
( struct
subset*) malloc ( V *
sizeof ( struct subset)
);
// Create V subsets
with single elements
for
( int v = 0; v < V;
++v)
{
subsets[v].parent
= v;
subsets[v].rank
= 0;
}
// Number of edges to
be taken is equal to V-1
while (e
< V - 1 && i < graph->E)
{
//
Step 2: Pick the smallest edge. And increment
//
the index for next iteration
struct
Edge next_edge = graph->edge[i++];
int
x = find(subsets, next_edge.src);
int
y = find(subsets, next_edge.dest);
//
If including this edge does't cause cycle,
//
include it in result and increment the index
//
of result for next edge
if
(x != y)
{
result[e++]
= next_edge;
Union(subsets,
x, y);
}
//
Else discard the next_edge
}
// print the contents
of result[] to display the
// built
MST
printf ( "Following
are the edges in the constructed MST\n" );
for (i =
0; i < e; ++i)
printf ( "%d
-- %d == %d\n" , result[i].src,
result[i].dest,
result[i].weight);
return ;
}
// Driver program to test above functions
int main()
{
/* Let us create
following weighted graph
10
0--------1
|
\ |
6|
5\ |15
|
\ |
2--------3
4
*/
int V =
4; // Number of vertices in graph
int E =
5; // Number of edges in graph
struct
Graph* graph = createGraph(V, E);
// add edge
0-1
graph->edge[0].src
= 0;
graph->edge[0].dest =
1;
graph->edge[0].weight
= 10;
// add edge
0-2
graph->edge[1].src
= 0;
graph->edge[1].dest =
2;
graph->edge[1].weight
= 6;
// add edge
0-3
graph->edge[2].src
= 0;
graph->edge[2].dest =
3;
graph->edge[2].weight
= 5;
// add edge
1-3
graph->edge[3].src
= 1;
graph->edge[3].dest =
3;
graph->edge[3].weight
= 15;
// add edge
2-3
graph->edge[4].src
= 2;
graph->edge[4].dest =
3;
graph->edge[4].weight
= 4;
KruskalMST(graph);
return
0;
}
|