Question

In: Economics

Priya has preferences over consumption and leisure given by U(C,L) = CL. Her total number of...

Priya has preferences over consumption and leisure given by U(C,L) = CL. Her total number of available hours in a given week is 100. Her non-labour income is £800. If she chooses to work, she earns w = £20 per hour. If the government starts a welfare policy that pays an amount of £B to all non-workers and pays 0 to all workers, at what value of B will Priya opt out of the labour force in order to go on welfare?

Solutions

Expert Solution

Solution: Priya has total available hour in a week = 100 hr

If she choose to work se will be earning wage = £20 per hour

Non-Labour Income for 100hr = £800----------(1)

If government is paying £B per hr to all non-worker

The the value of B from expression (1) wil be =£800100 hr=£8

Therefor value of B= £8


Related Solutions

Robert has utility function u(c,l) = cl over consumption, c, and leisure, l. Robert is endowed...
Robert has utility function u(c,l) = cl over consumption, c, and leisure, l. Robert is endowed with 16 hours of leisure. Let the price of consumption be p = 1. Robert can sell his time in the labor market at hourly wage, w. The equilibrium we will consider implies zero firm profits, so labor income is the only source of income for consumers. Thus, Robert’s budget line can be written by c + wl = 16w. Production of the consumption...
Robert has utility function u(c,l) = cl over consumption, c, and leisure, l. Robert is endowed...
Robert has utility function u(c,l) = cl over consumption, c, and leisure, l. Robert is endowed with 16 hours of leisure. Let the price of consumption be p = 1. Robert can sell his time in the labor market at hourly wage, w. The equilibrium we will consider implies zero firm profits, so labor income is the only source of income for consumers. Thus, Robert’s budget line can be written by c + wl = 16w. Production of the consumption...
Suppose preferences for consumption and leisure are: u(c, l) = ln(c) + θ ln(l) and households...
Suppose preferences for consumption and leisure are: u(c, l) = ln(c) + θ ln(l) and households solve: maxc,l u(c, l) s.t. c=w(1−τ)(1−l)+T Now suppose that in both Europe and the US we have: θ = 1.54 w=1 but in the US we have: τ = 0.34 T = 0.102 while in Europe we have: τ = 0.53 T = 0.124 The values for τ and T above are not arbitrary. If you did the calculations correctly, you should find that...
Shelly’s preferences for consumption and leisure can be expressed as U(C, L) = (C – 100)  (L – 40).
Shelly’s preferences for consumption and leisure can be expressed as U(C, L) = (C – 100)  (L – 40). This utility function implies that Shelly’s marginal utility of leisure is C – 100 and her marginal utility of consumption is L – 40. There are 110 (non-sleeping) hours in the week available to split between work and leisure. Shelly earns $10 per hour after taxes. She also receives $320 worth of welfare benefits each week regardless of how much...
2-6. Shelly’s preferences for consumption and leisure can be expressed as U(C, L) = (C -...
2-6. Shelly’s preferences for consumption and leisure can be expressed as U(C, L) = (C - 100) × (L - 40) This utility function implies that Shelly’s marginal utility of leisure is C - 200 and her marginal utility of consumption is L- 40. There are 110 (non-sleeping) hours in the week available to split between work and leisure. Shelly earns $10 per hour after taxes. She also receives $320 worth of welfare benefits each week regardless of how much...
Shelly’s preferences for consumption and leisure can be expressed as U(C, L) = min(C,2L) This utility...
Shelly’s preferences for consumption and leisure can be expressed as U(C, L) = min(C,2L) This utility function implies that Shelly views consumption and leisure as compliments. There are 110 (non-sleeping) hours in the week available to split between work and leisure. Shelly earns $10 per hour after taxes. She also receives $320 worth of welfare benefits each week regardless of how much she works. a) Graph Shelly’s budget line. b) Find Shelly’s optimal amount of consumption and leisure. c) What...
Question 1: Given the following utility function: (U=Utility, l=leisure, c=consumption) U = 2l + 3c and...
Question 1: Given the following utility function: (U=Utility, l=leisure, c=consumption) U = 2l + 3c and production function: (Y=Output, N or Ns=Labour or Labour Supply) Y = 30N1/2 If h = 100 and G =10 (h=Hours of labour, G=Government spending). Find the equilibrium levels of the real wage (w), consumption (c), leisure (l), and output (Y). Question 2: (Continuting from question 1) a, Find the relationship between total tax revenue and the tax rate if G = tWN. (G=Government spending,...
Question 1: Given the following utility function: (U=Utility, l=leisure, c=consumption) U = 2l + 3c and...
Question 1: Given the following utility function: (U=Utility, l=leisure, c=consumption) U = 2l + 3c and production function: (Y=Output, N or Ns=Labour or Labour Supply) Y = 30N1/2 If h = 100 and G =10 (h=Hours of labour, G=Government spending). Find the equilibrium levels of the real wage (w), consumption (c), leisure (l), and output (Y). Question 2: (Continuting from question 1) a, Find the relationship between total tax revenue and the tax rate if G = tWN. (G=Government spending,...
8、Assume that utility depends on consumption c and leisure l , U(c,l) . (a) Define reservation...
8、Assume that utility depends on consumption c and leisure l , U(c,l) . (a) Define reservation wage. (b) “The reservation wage increases with (i) non-labor income, (ii) fixed monetary costs of work, (iii) fixed time costs of work, and (iv) the price of consumption.” Prove or disprove each of these four claims.
25) Consider the following one-period, closed-economy model. Utility function over consumption (C) and leisure (L) U(C,L)...
25) Consider the following one-period, closed-economy model. Utility function over consumption (C) and leisure (L) U(C,L) = C 1/2 L 1/2 Total hours: H = 40 Labour hours: N S = H – L Government expenditure = 30 Lump-sum tax = T Production function: Y = zN D Total factor productivity: z = 2 The representative consumer maximizes utility, the representative firm maximizes profit, and the government balances budget. Suppose there is an increase in total factor productivity, z, to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT