In: Finance
A bond with a 7-year duration is worth $1,088, and its yield to maturity is 8.8%. If the yield to maturity falls to 8.56%, you would predict that the new value of the bond will be approximately $1,085.39 $1,088.00 $1,090.61 $1,104.76 |
"New value of the bond will be approximately=$1,104.76" is correct | ||||||||||||
Lets calculate the coupon amount first | ||||||||||||
Calculation of bond price with 7 year maturity no of period=7*2=14 as bonds making half yearly payment & YTM=(8.8/2)%=4.4% per period | ||||||||||||
Copon amount per period=1000*r%=x, face value of bond=$1,000 | ||||||||||||
current price of bond=x*(PVIFA,4.4%,14)+ 1000*(PVIF,4.4%,14) | ||||||||||||
Formula to calculate | ||||||||||||
PVIFA=((1-(1+r)^(-n))/r) where r is the yield to maturity, n = period | ||||||||||||
PVIF=1/(1+r)^n where r is the yield to maturity, n = period | ||||||||||||
Let put the value into above | ||||||||||||
PVIFA=((1-(1+4.4%)^(-14))/4.4%) | 10.28957 | |||||||||||
PVIF=1/(1+4.4%)^14 | 0.54726 | |||||||||||
put this value into above equation | ||||||||||||
1088=x*(10.28957)+ 1000*(0.54726) | ||||||||||||
x=(1088- 1000*(0.54726))/10.28957 | 52.55 | |||||||||||
Half year coupon=$52.55 | ||||||||||||
Now yield to maturity has been reduced to 8.56%, bond value will be | ||||||||||||
New price of bond=52.55*(PVIFA,4.28%,14)+ 1000*(PVIF,4.28%,14) | ||||||||||||
Formula to calculate | ||||||||||||
PVIFA=((1-(1+r)^(-n))/r) where r is the yield to maturity, n = period | ||||||||||||
PVIF=1/(1+r)^n where r is the yield to maturity, n = period | ||||||||||||
Let put the value into above | ||||||||||||
PVIFA=((1-(1+4.28%)^(-14))/4.28%) | 10.37051 | |||||||||||
PVIF=1/(1+4.28%)^14 | 0.55614 | |||||||||||
put this value into above equation | ||||||||||||
New price of bond=52.55*(10.37051)+ 1000*(0.55614)=$1,101.11 |