In: Finance
Calculate the duration of a 2 year bond that pays semiannually and has a 7% yield if the coupon rate is 6%.
1.81
1.86
1.91
1.96
None of the above
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =2x2 |
Bond Price =∑ [(6*1000/200)/(1 + 7/200)^k] + 1000/(1 + 7/200)^2x2 |
k=1 |
Bond Price = 981.63 |
Period | Cash Flow | Discounting factor | PV Cash Flow | Duration Calc |
0 | ($981.63) | =(1+YTM/number of coupon payments in the year)^period | =cashflow/discounting factor | =PV cashflow*period |
1 | 30.00 | 1.04 | 28.99 | 28.99 |
2 | 30.00 | 1.07 | 28.01 | 56.01 |
3 | 30.00 | 1.11 | 27.06 | 81.17 |
4 | 1,030.00 | 1.15 | 897.59 | 3,590.34 |
Total | 3,756.51 |
Macaulay duration =(∑ Duration calc)/(bond price*number of coupon per year) |
=3756.51/(981.63*2) |
=1.91 |