Question

In: Finance

The duration of a bond with 8% annual coupon rate when the yield to maturity is...

The duration of a bond with 8% annual coupon rate when the yield to maturity is 10% and two years left to maturity is:

Question 10 options:

1)

1.75 years

2)

1.80 years

3)

1.92 years

4)

2.96 years

Solutions

Expert Solution

Suppose the Face value of the bond = $1000

Annual coupon rate = 8%

Annual coupon payment = Annual coupon rate*Face value = 8%*1000 = 80

Yield to maturity = YTM = 10%

The cashflow for this bond is: C1 = 80, C2 = 1080

Present value of C1 = PV(C1) = C1/(1+YTM)1 = 80/(1+10%)1 =

Present value of C2 = PV(C2) = C2/(1+YTM)2 = 1080/(1+10%)2 =

Period Cashflow PV of cashflow
1 80 72.72727273
2 1080 892.5619835

Price of the bond is the sum of the present value of all the cash flows

Price of the bond = P = PV(C1) + PV(C2) = 72.7272727272727 + 892.561983471074 = 965.289256198347

Bond's Price = P = 965.289256198347

Now, Duration is calculated using the formula:

Duration = [(1*72.7272727272727)+(2*892.561983471074)]/965.289256198347 = (72.7272727272727+1785.12396694215)/965.289256198347 = 1857.85123966942/965.289256198347 = 1.92465753424658 ~ 1.92 years(Rounded to two decimals)

Duration = 1.92 years

Answer -> 1.92 years (option 3)


Related Solutions

A 30-year maturity bond making annual coupon payments with a coupon rate of 8% has duration...
A 30-year maturity bond making annual coupon payments with a coupon rate of 8% has duration of 11.37 years and convexity of 187.81. The bond currently sells at a yield to maturity of 9%. a. Find the price of the bond if its yield to maturity falls to 8%. (Do not round intermediate calculations. Round your answers to 2 decimal places.) b. What price would be predicted by the duration rule? (Do not round intermediate calculations. Round your answers to...
What is the coupon rate of an annual coupon bond that has a yield to maturity...
What is the coupon rate of an annual coupon bond that has a yield to maturity of 5.5%, a current price of $949.81, a par value of $1,000 and matures in 15 years? 6.33% 4.70% 3.07% 5.00%
Bond Coupon Rate Yield Maturity Duration A 7% 3.5% 4 Years B Zero Coupon 5.25% 8...
Bond Coupon Rate Yield Maturity Duration A 7% 3.5% 4 Years B Zero Coupon 5.25% 8 Years A) Compute the duration of each bond, assuming annual interest payments for the coupon bonds. Show your work below. (10 points) B) What is the duration-predicted price change for each bond for a 1% increase in rates? Show your work below. (15 points)
A zero-coupon bond with 4 years to maturity and the yield to maturity of 8%. When...
A zero-coupon bond with 4 years to maturity and the yield to maturity of 8%. When the yield increases, the duration of this bond decreases. a. True b. False 2) A bond issuer often repurchases Callable bonds for a discount bond. a. True b. False Credit Default Swap (CDS) is an insurance policy on default risk of corporate bond or loan. a. True b. False 4) The delivery of the underlying asset is seldom made in forward contracts while the...
A 12.25-year maturity zero-coupon bond selling at a yield to maturity of 8% (effective annual yield)...
A 12.25-year maturity zero-coupon bond selling at a yield to maturity of 8% (effective annual yield) has convexity of 139.2 and modified duration of 11.34 years. A 40-year maturity 6% coupon bond making annual coupon payments also selling at a yield to maturity of 8% has nearly identical modified duration—-12.30 years—but considerably higher convexity of 272.9. a. Suppose the yield to maturity on both bonds increases to 9%. What will be the actual percentage capital loss on each bond? What...
A 12.75-year maturity zero-coupon bond selling at a yield to maturity of 8% (effective annual yield)...
A 12.75-year maturity zero-coupon bond selling at a yield to maturity of 8% (effective annual yield) has convexity of 150.3 and modified duration of 11.81 years. A 30-year maturity 6% coupon bond making annual coupon payments also selling at a yield to maturity of 8% has nearly identical duration—11.79 years—but considerably higher convexity of 231.2. Suppose the yield to maturity on both bonds increases to 9%. What will be the actual percentage capital loss on each bond? What percentage capital...
A 13.05-year maturity zero-coupon bond selling at a yield to maturity of 8% (effective annual yield)...
A 13.05-year maturity zero-coupon bond selling at a yield to maturity of 8% (effective annual yield) has convexity of 120.2 and modified duration of 11.91 years. A 40-year maturity 6% coupon bond making annual coupon payments also selling at a yield to maturity of 8% has nearly identical modified duration—-11.65 years—-but considerably higher convexity of 280.2. a. Suppose the yield to maturity on both bonds increases to 9%. What will be the actual percentage capital loss on each bond? What...
A 13.05-year maturity zero-coupon bond selling at a yield to maturity of 8% (effective annual yield)...
A 13.05-year maturity zero-coupon bond selling at a yield to maturity of 8% (effective annual yield) has convexity of 157.2 and modified duration of 12.08 years. A 40-year maturity 6% coupon bond making annual coupon payments also selling at a yield to maturity of 8% has nearly identical modified duration—-12.30 years—-but considerably higher convexity of 272.9. a. Suppose the yield to maturity on both bonds increases to 9%. What will be the actual percentage capital loss on each bond? What...
5. The yield to maturity on a bond is ________. A. below the coupon rate when...
5. The yield to maturity on a bond is ________. A. below the coupon rate when the bond sells at a discount, and equal to the coupon rate when the bond sells at a premium. B. the discount rate that will set the present value of the payments equal to the bond price. C. based on the assumption that any payments received are reinvested at the coupon rate. D. none of the above. 6. Ceteris paribus, the duration of a...
Bond Face Value Coupon rate Yield to Maturity Term to Maturity Duration A $1000 4% 10%...
Bond Face Value Coupon rate Yield to Maturity Term to Maturity Duration A $1000 4% 10% 5 4.57 B $1000 12% 10% 5 4.07 Now suppose the yield to maturity becomes 11%. What are the % change in prices of bond A and B?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT