Question

In: Economics

Consider an exchange economy with 258814 people and 14512 goods and assume each good is traded...

Consider an exchange economy with 258814 people and 14512 goods and assume each good is traded under perfectly competitive conditions. How many equations must be solved to find the (general) equilibrium in this economy?

Solutions

Expert Solution

N - 1 equations are required to be solved in the general equilibrium where N is number of people in the economy. So, N - 1 = 258814 - 1 = 258813 equations must be solve to find the general equilibrium.


Related Solutions

Consider a pure exchange economy with 2 goods and 3 agents. Good y is the numeraire,...
Consider a pure exchange economy with 2 goods and 3 agents. Good y is the numeraire, so we set py = 1. • Mr. 1 is Cobb-Douglas of type λ = 0.25 and is endowed with (10, 4). • Mr. 2 is Cobb-Douglas of type λ = 0.5 and is endowed with (5, 9). • Mr. 3 is Cobb-Douglas of type λ = 0.75 and is endowed with (20, 20). In the following steps, you will find the equilibrium of...
11. Consider an exchange economy consisting of two people, A and B, endowed with two goods,...
11. Consider an exchange economy consisting of two people, A and B, endowed with two goods, 1 and 2. Person A is initially endowed with ωA= (0,3) and person B is initially endowed with ωB= (6,0). They have identical preferences, which are given by UA(x1, x2) =UB(x1, x2) =x12x2. (a) Write the equation of the contract curve (express x2Aas a function of x1A1). (b) Let p2= 1. Find the competitive equilibrium price,p1, and allocations,xA= (x1A, x2A) and xB= (x1B, x2B)....
Consider a pure exchange economy with 2 goods and 3 agents. Goody is the numeraire,...
Consider a pure exchange economy with 2 goods and 3 agents. Good y is the numeraire, so we set py = 1. • Mr. 1 is Cobb-Douglas of type λ = 0.25 and is endowed with (10, 4). • Mr. 2 is Cobb-Douglas of type λ = 0.5 and is endowed with (5, 9). • Mr. 3 is Cobb-Douglas of type λ = 0.75 and is endowed with (20, 20). In the following steps, you will find the equilibrium of...
Consider the exchange economy. It consists of two individuals, A and B. The only two goods...
Consider the exchange economy. It consists of two individuals, A and B. The only two goods available for consumption are red wine and choco- late. The endowment of the economy is 64 units of red wine and 16 units of chocolate. A’s endowment is wa ? and ca ? ; B’s endowment is wb ? and cb ? . The utility functions for each individual are U = 2(wa ca )1/2 and UB = 10(wBcB)1/2, where wj and cj are...
Consider an exchange economy with two individuals, A and B, and two goods, x and y....
Consider an exchange economy with two individuals, A and B, and two goods, x and y. Individual A has utility function UA(xA; yA) = xAyA, and individual B has utility function UB(xB; yB) = xByB. If there are 10 units of x and 10 units of y in the market, what is the equation of the contract curve? Group of answer choices yA = 0.5xA yA = 2xA yA = 5xA yA = xA
Assume economy with two goods x and y and two people Alice and Bob. The MRSA...
Assume economy with two goods x and y and two people Alice and Bob. The MRSA of Alice is 15. The MRSB of the Bob is 10. (a) Is the current allocation of x and y is efficient? Why yes or why not? (b) Is there a trade that would be voluntary? Explain. Support your answer by graph. (c) Pareto Efficient Allocations, the Contract Curve and the Core. Define these three terms and explain the relationship between them. Use the...
Consider an exchange economy with two agents, A, B, and two goods,  x, y. A's endowment is...
Consider an exchange economy with two agents, A, B, and two goods,  x, y. A's endowment is x = 6, y = 4, and B's endowment is x = 4, y = 6. (a) Suppose that A has utility function  u(x, y) = x + y  and B has utility function u(x, y) = xy. Find a competitive equilibrium allocation (CEA) and associated equilibrium prices. What difference would it make if A's endowment is x = 3, y = 1, and B's endowment...
6. Consider a pure exchange economy with two individuals, Sarah and James, and two goods, X...
6. Consider a pure exchange economy with two individuals, Sarah and James, and two goods, X and Y . For Sarah, goods X and Y are perfect complements (Leontief preferences), so her utility function is US = min {XS, YS}. For James, goods X and Y are perfect substitutes, so his utility function is UJ = XJ + YJ . Suppose the economy has 100 units of good X and 50 of good Y . Draw indifference curves for Sarah...
3. Consider a pure exchange economy with two goods, wine (x) and cheese (y) and two...
3. Consider a pure exchange economy with two goods, wine (x) and cheese (y) and two con- sumers, A and B. Let cheese be the numeraire good with price of $1. Consumer A’s utility function is UA(x,y) = xy and B’s utility function is UB(x,y) = min[x,y]. A has an initial allocation of 10 x and no y, and B has an initial allocation of 10 units of y and no x. (a) Put wine x on the horizontal axis...
Consider an economy with three people and two goods, one public (g) and one private (x)....
Consider an economy with three people and two goods, one public (g) and one private (x). The utility functions for the three people are UA = xA +20lng, UB = xB +30lng, and UC = xC +10lng. The marginal cost of g is constant at 10. According to the Samuelson condition, what is the socially efficient amount of the public good in this economy? Explain why the Samuelson condition picks out the efficient amount of a public good.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT