In: Statistics and Probability
The time required for an automotive center to complete an oil change service on an automobile approximately follows a normal distribution, with a mean of 19 minutes and a standard deviation of 3
minutes.
(a) The automotive center guarantees customers that the service will take no longer than 20
minutes. If it does take longer, the customer will receive the service for half-price. What percent of customers receive the service for half-price?
(b) If the automotive center does not want to give the discount to more than 7% of its customers, how long should it make the guaranteed time limit?
A)
µ =    19      
           
σ =    3      
           
          
           
P ( X ≥   20.00   ) = P( (X-µ)/σ ≥ (20-19) /
3)          
   
= P(Z ≥   0.333   ) = P( Z <  
-0.333   ) =    0.3694  
= 36.94% (answer)
B)
µ=   19      
           
σ =    3      
           
proportion=   0.93      
           
          
           
Z value at    0.93   =  
1.48   (excel formula =NORMSINV(  
0.93   ) )
z=(x-µ)/σ          
           
so, X=zσ+µ=   1.48   *  
3   +   19  
X   =   23.43  
(answer)      
   
Thanks in advance!
revert back for doubt
Please upvote