In: Statistics and Probability
Use the dependent variable (labeled Y) and one of the independent variables (labeled X1, X2, and X3) in the data file. Select and use one independent variable throughout this analysis. Use Excel to perform the regression and correlation analysis to answer the following.
Generate a scatterplot for the specified dependent variable (Y) and the selected independent variable (X), including the graph of the "best fit" line. Interpret.
Determine the equation of the "best fit" line, which describes the relationship between the dependent variable and the selected independent variable.
Determine the coefficient of correlation. Interpret.
Determine the coefficient of determination. Interpret.
Test the utility of this regression model, represented by a hypothesis test of b=0 using α=0.10. Interpret results, including the p-value.
Based on the findings in steps 1-5, analyze the ability of the independent variable to predict the dependent variable?
Compute the confidence interval for b, using a 95% confidence level. Interpret this interval.
Compute the 99% confidence interval for the dependent variable, for a selected value of the independent variable. Each student can choose a value to use for the independent variable (use same value in the next step). Interpret this interval.
Using the same chosen value for part (8), estimate the 99% prediction interval for the dependent variable. Interpret this interval.
What can be said about the value of the dependent variable for values of the independent variable that are outside the range of the sample values? Explain.
Sales (Y) | Calls (X1) | Time (X2) | Years (X3) | Type |
40 | 144 | 17.4 | 0.00 | NONE |
46 | 145 | 16.8 | 0.00 | ONLINE |
37 | 152 | 19.8 | 0.00 | NONE |
47 | 164 | 15.3 | 0.00 | ONLINE |
42 | 135 | 16.1 | 0.00 | NONE |
44 | 169 | 8.9 | 0.00 | ONLINE |
52 | 173 | 18.6 | 0.00 | ONLINE |
53 | 184 | 15.2 | 0.00 | ONLINE |
49 | 152 | 22.3 | 0.00 | ONLINE |
49 | 166 | 16.2 | 0.00 | ONLINE |
45 | 185 | 13.3 | 1.00 | ONLINE |
47 | 157 | 14.3 | 1.00 | GROUP |
42 | 148 | 16.9 | 1.00 | NONE |
43 | 131 | 18.5 | 1.00 | NONE |
44 | 150 | 18.4 | 1.00 | NONE |
43 | 148 | 15.9 | 1.00 | ONLINE |
55 | 189 | 12 | 1.00 | ONLINE |
49 | 188 | 20.4 | 1.00 | NONE |
51 | 190 | 11.3 | 1.00 | ONLINE |
37 | 137 | 18.1 | 1.00 | ONLINE |
51 | 167 | 16.2 | 1.00 | ONLINE |
37 | 130 | 15.6 | 1.00 | GROUP |
37 | 142 | 18.5 | 1.00 | NONE |
46 | 153 | 14.1 | 1.00 | ONLINE |
39 | 149 | 18.8 | 1.00 | GROUP |
46 | 151 | 16 | 1.00 | GROUP |
45 | 158 | 13.9 | 1.00 | ONLINE |
46 | 172 | 12.5 | 1.00 | ONLINE |
47 | 188 | 16.3 | 1.00 | NONE |
37 | 148 | 16.2 | 1.00 | GROUP |
46 | 162 | 12.1 | 1.00 | GROUP |
52 | 177 | 14.5 | 1.00 | ONLINE |
48 | 175 | 13.7 | 1.00 | ONLINE |
40 | 150 | 10.8 | 1.00 | GROUP |
53 | 182 | 10.5 | 1.00 | ONLINE |
54 | 197 | 11.8 | 1.00 | ONLINE |
46 | 148 | 13.1 | 1.00 | GROUP |
41 | 153 | 14.7 | 1.00 | GROUP |
44 | 169 | 13.6 | 1.00 | ONLINE |
47 | 176 | 14.1 | 2.00 | ONLINE |
47 | 183 | 12.8 | 2.00 | ONLINE |
48 | 136 | 14.1 | 2.00 | ONLINE |
52 | 197 | 13.9 | 2.00 | ONLINE |
37 | 120 | 12 | 2.00 | NONE |
49 | 184 | 16.7 | 2.00 | ONLINE |
43 | 173 | 19.8 | 2.00 | ONLINE |
42 | 153 | 15.5 | 2.00 | GROUP |
37 | 133 | 19.8 | 2.00 | NONE |
42 | 154 | 14.8 | 2.00 | ONLINE |
53 | 178 | 13.2 | 2.00 | ONLINE |
45 | 138 | 18.9 | 2.00 | NONE |
42 | 167 | 18 | 2.00 | NONE |
48 | 171 | 13 | 2.00 | GROUP |
46 | 162 | 16.2 | 2.00 | ONLINE |
49 | 149 | 21.1 | 2.00 | GROUP |
48 | 174 | 18.6 | 2.00 | GROUP |
45 | 173 | 17.6 | 2.00 | ONLINE |
45 | 155 | 18.9 | 2.00 | GROUP |
44 | 159 | 18.1 | 2.00 | ONLINE |
54 | 174 | 10.8 | 2.00 | NONE |
44 | 139 | 15.2 | 2.00 | NONE |
41 | 158 | 19.3 | 2.00 | ONLINE |
43 | 145 | 18.6 | 2.00 | NONE |
47 | 193 | 13.5 | 2.00 | ONLINE |
38 | 145 | 17.1 | 2.00 | NONE |
50 | 184 | 15.6 | 2.00 | ONLINE |
41 | 128 | 15.5 | 2.00 | NONE |
45 | 177 | 14.2 | 2.00 | GROUP |
49 | 170 | 16.1 | 3.00 | NONE |
38 | 122 | 19.3 | 3.00 | GROUP |
46 | 171 | 13.6 | 3.00 | GROUP |
37 | 148 | 15.7 | 3.00 | GROUP |
42 | 167 | 17.7 | 3.00 | ONLINE |
44 | 148 | 13.5 | 3.00 | GROUP |
45 | 164 | 16.7 | 3.00 | NONE |
45 | 146 | 12 | 3.00 | GROUP |
48 | 177 | 13.9 | 3.00 | ONLINE |
49 | 160 | 13.6 | 3.00 | GROUP |
46 | 149 | 17.8 | 3.00 | NONE |
45 | 140 | 11 | 3.00 | GROUP |
45 | 130 | 20.6 | 3.00 | GROUP |
43 | 166 | 17.6 | 3.00 | ONLINE |
44 | 188 | 12.9 | 3.00 | GROUP |
41 | 157 | 11.5 | 3.00 | ONLINE |
41 | 155 | 13.6 | 3.00 | GROUP |
43 | 153 | 15.2 | 3.00 | GROUP |
37 | 145 | 18 | 3.00 | NONE |
34 | 133 | 15.2 | 4.00 | GROUP |
51 | 177 | 11.4 | 4.00 | NONE |
43 | 169 | 13.3 | 4.00 | NONE |
39 | 156 | 13.3 | 4.00 | NONE |
40 | 125 | 12.2 | 5.00 | NONE |
44 | 182 | 15.5 | 5.00 | NONE |
48 | 156 | 15.1 | 4.00 | ONLINE |
43 | 148 | 14.5 | 4.00 | ONLINE |
39 | 138 | 17.7 | 4.00 | GROUP |
42 | 160 | 10.6 | 4.00 | NONE |
54 | 180 | 11.8 | 5.00 | GROUP |
51 | 167 | 12.6 | 6.00 | ONLINE |
48 | 165 | 19.8 | 6.00 | ONLINE |
I have used X1 as independent variable
using excel for linear regression
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.693202078 | |||||||
R Square | 0.480529122 | |||||||
Adjusted R Square | 0.475228398 | |||||||
Standard Error | 3.428879729 | |||||||
Observations | 100 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 1065.832813 | 1065.832813 | 90.65350123 | 1.3252E-15 | |||
Residual | 98 | 1152.207187 | 11.7572162 | |||||
Total | 99 | 2218.04 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 99.0% | Upper 99.0% | |
Intercept | 16.07981771 | 3.042128936 | 5.285712095 | 7.59202E-07 | 10.04281185 | 22.11682358 | 8.088354613 | 24.07128081 |
Calls (X1) | 0.180236613 | 0.018930005 | 9.521213223 | 1.3252E-15 | 0.142670634 | 0.217802591 | 0.130508794 | 0.229964431 |
Determine the equation of the "best fit" line, which describes the relationship between the dependent variable and the selected independent variable.
y^ = 16.0798+ 0.1802 * x
Determine the coefficient of correlation. Interpret.
r = 0.6932
this mean there is positive correlation between two variable
the strength is moderate
Determine the coefficient of determination. Interpret.
this is given by R^2 = 0.4805
this means that this model explains 48.05 % of variation in y
Test the utility of this regression model, represented by a
hypothesis test of b=0 using α=0.10. Interpret results, including
the p-value.
p-value for b is 1.3252*10^(-15) << 0.10
hence we reject the null hypothesis
the model is useful
Based on the findings in steps 1-5, analyze the ability of the
independent variable to predict the dependent variable?
The model is significant
although R^2 is less , maybe we can use other independent variable
to predict more accurately
Compute the confidence interval for b, using a 95% confidence
level. Interpret this interval
95% confidence interval for b1 (0.1427,0.2178)
Please post questions again
I have solved more than 4 sub-parts which i was supposed to do
Please g