Question

In: Statistics and Probability

Use the dependent variable (labeled Y) and one of the independent variables (labeled X1, X2, and...

Use the dependent variable (labeled Y) and one of the independent variables (labeled X1, X2, and X3) in the data file. Select and use one independent variable throughout this analysis. Use Excel to perform the regression and correlation analysis to answer the following.

Generate a scatterplot for the specified dependent variable (Y) and the selected independent variable (X), including the graph of the "best fit" line. Interpret.

Determine the equation of the "best fit" line, which describes the relationship between the dependent variable and the selected independent variable.

Determine the coefficient of correlation. Interpret.

Determine the coefficient of determination. Interpret.

Test the utility of this regression model, represented by a hypothesis test of b=0 using α=0.10. Interpret results, including the p-value.

Based on the findings in steps 1-5, analyze the ability of the independent variable to predict the dependent variable?

Compute the confidence interval for b, using a 95% confidence level. Interpret this interval.

Compute the 99% confidence interval for the dependent variable, for a selected value of the independent variable. Each student can choose a value to use for the independent variable (use same value in the next step). Interpret this interval.

Using the same chosen value for part (8), estimate the 99% prediction interval for the dependent variable. Interpret this interval.

What can be said about the value of the dependent variable for values of the independent variable that are outside the range of the sample values? Explain.

Sales (Y) Calls (X1) Time (X2) Years (X3) Type
40 144 17.4 0.00 NONE
46 145 16.8 0.00 ONLINE
37 152 19.8 0.00 NONE
47 164 15.3 0.00 ONLINE
42 135 16.1 0.00 NONE
44 169 8.9 0.00 ONLINE
52 173 18.6 0.00 ONLINE
53 184 15.2 0.00 ONLINE
49 152 22.3 0.00 ONLINE
49 166 16.2 0.00 ONLINE
45 185 13.3 1.00 ONLINE
47 157 14.3 1.00 GROUP
42 148 16.9 1.00 NONE
43 131 18.5 1.00 NONE
44 150 18.4 1.00 NONE
43 148 15.9 1.00 ONLINE
55 189 12 1.00 ONLINE
49 188 20.4 1.00 NONE
51 190 11.3 1.00 ONLINE
37 137 18.1 1.00 ONLINE
51 167 16.2 1.00 ONLINE
37 130 15.6 1.00 GROUP
37 142 18.5 1.00 NONE
46 153 14.1 1.00 ONLINE
39 149 18.8 1.00 GROUP
46 151 16 1.00 GROUP
45 158 13.9 1.00 ONLINE
46 172 12.5 1.00 ONLINE
47 188 16.3 1.00 NONE
37 148 16.2 1.00 GROUP
46 162 12.1 1.00 GROUP
52 177 14.5 1.00 ONLINE
48 175 13.7 1.00 ONLINE
40 150 10.8 1.00 GROUP
53 182 10.5 1.00 ONLINE
54 197 11.8 1.00 ONLINE
46 148 13.1 1.00 GROUP
41 153 14.7 1.00 GROUP
44 169 13.6 1.00 ONLINE
47 176 14.1 2.00 ONLINE
47 183 12.8 2.00 ONLINE
48 136 14.1 2.00 ONLINE
52 197 13.9 2.00 ONLINE
37 120 12 2.00 NONE
49 184 16.7 2.00 ONLINE
43 173 19.8 2.00 ONLINE
42 153 15.5 2.00 GROUP
37 133 19.8 2.00 NONE
42 154 14.8 2.00 ONLINE
53 178 13.2 2.00 ONLINE
45 138 18.9 2.00 NONE
42 167 18 2.00 NONE
48 171 13 2.00 GROUP
46 162 16.2 2.00 ONLINE
49 149 21.1 2.00 GROUP
48 174 18.6 2.00 GROUP
45 173 17.6 2.00 ONLINE
45 155 18.9 2.00 GROUP
44 159 18.1 2.00 ONLINE
54 174 10.8 2.00 NONE
44 139 15.2 2.00 NONE
41 158 19.3 2.00 ONLINE
43 145 18.6 2.00 NONE
47 193 13.5 2.00 ONLINE
38 145 17.1 2.00 NONE
50 184 15.6 2.00 ONLINE
41 128 15.5 2.00 NONE
45 177 14.2 2.00 GROUP
49 170 16.1 3.00 NONE
38 122 19.3 3.00 GROUP
46 171 13.6 3.00 GROUP
37 148 15.7 3.00 GROUP
42 167 17.7 3.00 ONLINE
44 148 13.5 3.00 GROUP
45 164 16.7 3.00 NONE
45 146 12 3.00 GROUP
48 177 13.9 3.00 ONLINE
49 160 13.6 3.00 GROUP
46 149 17.8 3.00 NONE
45 140 11 3.00 GROUP
45 130 20.6 3.00 GROUP
43 166 17.6 3.00 ONLINE
44 188 12.9 3.00 GROUP
41 157 11.5 3.00 ONLINE
41 155 13.6 3.00 GROUP
43 153 15.2 3.00 GROUP
37 145 18 3.00 NONE
34 133 15.2 4.00 GROUP
51 177 11.4 4.00 NONE
43 169 13.3 4.00 NONE
39 156 13.3 4.00 NONE
40 125 12.2 5.00 NONE
44 182 15.5 5.00 NONE
48 156 15.1 4.00 ONLINE
43 148 14.5 4.00 ONLINE
39 138 17.7 4.00 GROUP
42 160 10.6 4.00 NONE
54 180 11.8 5.00 GROUP
51 167 12.6 6.00 ONLINE
48 165 19.8 6.00 ONLINE

Solutions

Expert Solution

I have used X1 as independent variable

using excel for linear regression

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.693202078
R Square 0.480529122
Adjusted R Square 0.475228398
Standard Error 3.428879729
Observations 100
ANOVA
df SS MS F Significance F
Regression 1 1065.832813 1065.832813 90.65350123 1.3252E-15
Residual 98 1152.207187 11.7572162
Total 99 2218.04
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0%
Intercept 16.07981771 3.042128936 5.285712095 7.59202E-07 10.04281185 22.11682358 8.088354613 24.07128081
Calls (X1) 0.180236613 0.018930005 9.521213223 1.3252E-15 0.142670634 0.217802591 0.130508794 0.229964431

Determine the equation of the "best fit" line, which describes the relationship between the dependent variable and the selected independent variable.

y^ = 16.0798+ 0.1802 * x

Determine the coefficient of correlation. Interpret.
r = 0.6932
this mean there is positive correlation between two variable
the strength is moderate

Determine the coefficient of determination. Interpret.
this is given by R^2 = 0.4805
this means that this model explains 48.05 % of variation in y


Test the utility of this regression model, represented by a hypothesis test of b=0 using α=0.10. Interpret results, including the p-value.

p-value for b is 1.3252*10^(-15) << 0.10
hence we reject the null hypothesis
the model is useful

Based on the findings in steps 1-5, analyze the ability of the independent variable to predict the dependent variable?
The model is significant
although R^2 is less , maybe we can use other independent variable to predict more accurately


Compute the confidence interval for b, using a 95% confidence level. Interpret this interval

95% confidence interval for b1 (0.1427,0.2178)

Please post questions again

I have solved more than 4 sub-parts which i was supposed to do

Please g


Related Solutions

Use the dependent variable (labeled Y) and one of the independent variables (labeled X1, X2, and...
Use the dependent variable (labeled Y) and one of the independent variables (labeled X1, X2, and X3) in the data file. Select and use one independent variable throughout this analysis. Use Excel to perform the regression and correlation analysis to answer the following. The week 6 spreadsheet can be helpful in this work. 1. Generate a scatterplot for the specified dependent variable (Y) and the selected independent variable (X), including the graph of the "best fit" line. Interpret. 2 Determine...
Regression and Correlation Analysis Use the dependent variable (labeled Y) and one of the independent variables...
Regression and Correlation Analysis Use the dependent variable (labeled Y) and one of the independent variables (labeled X1, X2, and X3) in the data file. Select and use one independent variable throughout this analysis. Use Excel to perform the regression and correlation analysis to answer the following. Generate a scatterplot for the specified dependent variable (Y) and the selected independent variable (X), including the graph of the "best fit" line. Interpret. Determine the equation of the "best fit" line, which...
Consider the following data for a dependent variable y and two independent variables, x2 and x1....
Consider the following data for a dependent variable y and two independent variables, x2 and x1. x1 x2 y 30 12 94 46 10 109 24 17 113 50 17 179 41 5 94 51 19 175 75 8 171 36 12 118 59 13 143 77 17 212 Round your all answers to two decimal places. Enter negative values as negative numbers, if necessary. a. Develop an estimated regression equation relating y to x1 . Predict y if x1=45....
Consider the following data for a dependent variable y and two independent variables, x1 and x2.
You may need to use the appropriate technology to answer this question. Consider the following data for a dependent variable y and two independent variables, x1 and x2. x1 x2 y 30 12 93 47 10 108 25 17 112 51 16 178 40 5 94 51 19 175 74 7 170 36 12 117 59 13 142 76 16 211 The estimated regression equation for these data is ŷ = −18.89 + 2.02x1 + 4.74x2. Here, SST = 15,276.0,...
Consider the following data for a dependent variable y and two independent variables, x1 and x2....
Consider the following data for a dependent variable y and two independent variables, x1 and x2. x1 x2 y 30 12 94 47 10 108 25 17 112 51 16 178 40 5 94 51 19 175 74 7 170 36 12 117 59 13 142 76 16 209 The estimated regression equation for these data is ŷ = −17.02 + 1.99x1 + 4.70x2. Here, SST = 14,902.9, SSR = 13,773.1, sb1 = 0.2470, and sb2 = 0.9480. (1a) Test...
Consider the following data for a dependent variable y and two independent variables, x1 and x2....
Consider the following data for a dependent variable y and two independent variables, x1 and x2. x1 x2 y 30 13 95 46 10 108 25 18 113 50 16 179 40 5 95 51 20 176 74 7 170 36 12 117 59 13 142 77 16 211 Round your all answers to two decimal places. Enter negative values as negative numbers, if necessary. a. Develop an estimated regression equation relating y to x1. ŷ =_________ +___________ x1 Predict...
Consider the following data for a dependent variable y and two independent variables, x1 and x2....
Consider the following data for a dependent variable y and two independent variables, x1 and x2. x1 x2 y 30 12 95 47 10 108 25 17 112 51 16 178 40 5 94 51 19 175 74 7 170 36 12 117 59 13 142 76 16 212 The estimated regression equation for these data is ŷ = −18.52 + 2.01x1 + 4.75x2. Here, SST = 15,234.1, SSR = 14,109.8, sb1 = 0.2464, and sb2 = 0.9457. (a)Test for...
For the table below, if Y is the dependent variable and X1 and X2 are the...
For the table below, if Y is the dependent variable and X1 and X2 are the independent variables. Using the linear regression equation Y=-0.45X1-1.34X2+15.67, which observation has the largest absolute residual? Observation number Actual Y x1 X2 1 4.5 6.8 6.1 2 3.7 8.5 5.1 3 5 9 5 4 5.1 6.9 5.4 5 7 8 4 6 5.7 8.4 5.4 The first observation The third observation The fifth observation The second observation
For the table below, if Y is the dependent variable and X1 and X2 are the...
For the table below, if Y is the dependent variable and X1 and X2 are the independent variables. Using the linear regression equation Y=-0.45X1-1.34X2+15.67, find the Sum of Squared Residuals? (choose the best answer) Observation number Actual Y x1 X2 1 4.5 6.8 6.1 2 3.7 8.5 5.1 3 5 9 5 4 5.1 6.9 5.4 5 7 8 4 6 5.7 8.4 5.4 2.57 2.97 3.2 3.5
5. Consider the following set of dependent and independent variables. y   x1   x2 10   1   17...
5. Consider the following set of dependent and independent variables. y   x1   x2 10   1   17 11   5   9 14   5   13 14   8   10 21   6   3 24   10   8 26   16   7 33   20   3 a. Using​ technology, construct a regression model using both independent variables. y=___+___x1+___x2 ​(Round to four decimal places as needed.) b. Test the significance of each independent variable using a=0.05 Test the significance of x1, Identify the null and alternative hypothesis c. Calculate the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT