Question

In: Statistics and Probability

What is the formula for the linear correlation coefficient? Write it again with the x and...


What is the formula for the linear correlation coefficient? Write it again with the x and y switch. What does this tell us about the formula?
Give an example of a 2 way Anova problem presented in chart form. Explain the chart.

Solutions

Expert Solution

For two way Anova there are 2 factor: A and B. Suppose factor A has a levels and factor B has b levels and the total number of observation are N. Since it's two way Anova so there are two factor. There might be some interaction between A and B . So the interaction effect has also been taken into account. So basically two way Anova helps to find out the individual effect of factor A and factor B. Also the interaction between them. The table provide 3 F-Ratios and whichever of them are significant will indicate the fact that it has an effect.


Related Solutions

A linear correlation coefficient of 0.92 suggests a ________________ linear relationship than a linear correlation coefficient...
A linear correlation coefficient of 0.92 suggests a ________________ linear relationship than a linear correlation coefficient of -0.86. The value of the ___________________ always lies between -1 and 1, inclusive. If the linear correlation coefficient of the regression line is negative, then the ____________________ of the least squares (linear) regression line must be negative. Give a detailed interpretation of the slope of a least squares (linear) regression line. Give a detailed interpretation of the intercept of a least squares (linear)...
What is a simple linear regression model?   What does the value of the linear correlation coefficient...
What is a simple linear regression model?   What does the value of the linear correlation coefficient tell us? Please type the answer as I have diffculties understanding handwritten answers. Thanks.
Using the data below find the linear correlation coefficient. x              y               xy    
Using the data below find the linear correlation coefficient. x              y               xy               x2               y2 3              4               12              9                 16 4             6                24              16               36 5             7               35              25               49 7            12              84              49               144 8            14              112             64               196 ___________________________________________ 27           43              267           163              441 Also, utilizing the above data, find the slope and intercept.
Examine the computation formula for r, the sample correlation coefficient. (a) In the formula for r,...
Examine the computation formula for r, the sample correlation coefficient. (a) In the formula for r, if we exchange the symbols x and y, do we get a different result or do we get the same (equivalent) result? Explain your answer. The result is the same because the formula is dependent on the symbols. The result is different because the formula is not dependent on the symbols. The result is the same because the formula is not dependent on the...
Examine the computation formula for r, the sample correlation coefficient. (a) In the formula for r,...
Examine the computation formula for r, the sample correlation coefficient. (a) In the formula for r, if we exchange the symbols x and y, do we get a different result or do we get the same (equivalent) result? Explain your answer. The result is the same because the formula is not dependent on the symbols. The result is the same because the formula is dependent on the symbols. The result is different because the formula is dependent on the symbols....
Examine the computation formula for r, the sample correlation coefficient. (a) In the formula for r,...
Examine the computation formula for r, the sample correlation coefficient. (a) In the formula for r, if we exchange the symbols x and y, do we get a different result or do we get the same (equivalent) result? Explain your answer. The result is the same because the formula is dependent on the symbols. The result is the same because the formula is not dependent on the symbols. The result is different because the formula is not dependent on the...
Examine the computation formula for r, the sample correlation coefficient. (a) In the formula for r,...
Examine the computation formula for r, the sample correlation coefficient. (a) In the formula for r, if we exchange the symbols x and y, do we get a different result or do we get the same (equivalent) result? Explain your answer. The result is the same because the formula is not dependent on the symbols. The result is different because the formula is not dependent on the symbols. The result is different because the formula is dependent on the symbols....
Use a scatterplot and the linear correlation coefficient r to determine whether there is a correlation...
Use a scatterplot and the linear correlation coefficient r to determine whether there is a correlation between the two variables. Use alphaequals0.05. x 6 1 4 8 5 y 5 0 2 7 4 Click here to view a table of critical values for the correlation coefficient. LOADING... Does the given scatterplot suggest that there is a linear​ correlation? A. Yes comma because the points appear to have a straight line pattern. B. ​Yes, because the data does not follow...
1. If the linear correlation coefficient of two variables is zero, then there is no _______________...
1. If the linear correlation coefficient of two variables is zero, then there is no _______________ relationship between the variables. A linear correlation coefficient of 0.92 suggests a ________________ linear relationship than a linear correlation coefficient of -0.86. The value of the ___________________ always lies between -1 and 1, inclusive. If the linear correlation coefficient of the regression line is negative, then the ____________________ of the least squares (linear) regression line must be negative. Give a detailed interpretation of the...
Determine and interpret the linear correlation coefficient, and use linear regression to find a best fit...
Determine and interpret the linear correlation coefficient, and use linear regression to find a best fit line for a scatter plot of the data and make predictions. Scenario According to the U.S. Geological Survey (USGS), the probability of a magnitude 6.7 or greater earthquake in the Greater Bay Area is 63%, about 2 out of 3, in the next 30 years. In April 2008, scientists and engineers released a new earthquake forecast for the State of California called the Uniform...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT