Question

In: Statistics and Probability

1. If the linear correlation coefficient of two variables is zero, then there is no _______________...

1. If the linear correlation coefficient of two variables is zero, then there is no _______________ relationship between the variables. A linear correlation coefficient of 0.92 suggests a ________________ linear relationship than a linear correlation coefficient of -0.86. The value of the ___________________ always lies between -1 and 1, inclusive. If the linear correlation coefficient of the regression line is negative, then the ____________________ of the least squares (linear) regression line must be negative. Give a detailed interpretation of the slope of a least squares (linear) regression line. Give a detailed interpretation of the intercept of a least squares (linear) regression line. Give a detailed interpretation of the coefficient of determination (R^2). Give two different methods to determine if a linear regression line fits data best. Describe in detail within each method what trends or information would constitute a lack of fit for any linear regression model.

Solutions

Expert Solution

The linear correlation coefficient lies between -1 and +1, the closer it is to -1, the more it has a negative linear relationship between the two variables. While the closer it is to +1, the more it has a positive correlation between the two variables. Also a value closer to 0 means no correlationship between the two variables.

Now we fill the blanks here as:

If the linear correlation coefficient of two variables is zero, then there is no linear relationship between the variables. A linear correlation coefficient of 0.92 suggests a positive linear relationship than a linear correlation coefficient of -0.86. The value of the linear correlation coefficient always lies between -1 and 1, inclusive. If the linear correlation coefficient of the regression line is negative, then the slope of the least squares (linear) regression line must be negative.

  • The interpretation of the slope is that for a unit increase in value of independent variable, the expected increase in the value of dependent variable value is equal to the slope while a unit decrease would lead to a slope decrease to dependent variable.
  • The interpretation of the intercept is that for 0 value of the independent variable, the expected value of the dependent variable would be equal to the intercept.
  • The coefficient of determination is defined as the proportion of variation in the dependent variable that is explained by the variation in the independent variable or explained by regression.
  • To test whether a linear regression fit the data, we can use the t test for testing the significance of the independent variables. In the same way, we use the correlation coefficient to determine the strength of linear correlation between the two variables.

Related Solutions

1. The linear correlation coefficient r measures of the linear relationship between two variables. (a) Distance...
1. The linear correlation coefficient r measures of the linear relationship between two variables. (a) Distance (b) size (c) strength (d) direction 2. 10 pairs of sample data were obtained from a study which looked at household income and the number of people in the household who smoked (cigarettes). The value of the linear correlation coefficient r was computed and a result of - 0.989 was obtained. All of the following (below) are conclusions that can be drawn from the...
1. The linear correlation coefficient r measures of the linear relationship between two variables. (a) Distance...
1. The linear correlation coefficient r measures of the linear relationship between two variables. (a) Distance (b) size (c) strength (d) direction 2. 10 pairs of sample data were obtained from a study which looked at household income and the number of people in the household who smoked (cigarettes). The value of the linear correlation coefficient r was computed and a result of - 0.989 was obtained. All of the following (below) are conclusions that can be drawn from the...
1. The linear correlation coefficient r measures of the linear relationship between two variables. (a) Distance...
1. The linear correlation coefficient r measures of the linear relationship between two variables. (a) Distance (b) size (c) strength (d) direction 2. 10 pairs of sample data were obtained from a study which looked at household income and the number of people in the household who smoked (cigarettes). The value of the linear correlation coefficient r was computed and a result of - 0.989 was obtained. All of the following (below) are conclusions that can be drawn from the...
1. The linear correlation coefficient r measures of the linear relationship between two variables. (a) Distance...
1. The linear correlation coefficient r measures of the linear relationship between two variables. (a) Distance (b) size (c) strength (d) direction 2. 10 pairs of sample data were obtained from a study which looked at household income and the number of people in the household who smoked (cigarettes). The value of the linear correlation coefficient r was computed and a result of - 0.989 was obtained. All of the following (below) are conclusions that can be drawn from the...
A linear correlation coefficient of 0.92 suggests a ________________ linear relationship than a linear correlation coefficient...
A linear correlation coefficient of 0.92 suggests a ________________ linear relationship than a linear correlation coefficient of -0.86. The value of the ___________________ always lies between -1 and 1, inclusive. If the linear correlation coefficient of the regression line is negative, then the ____________________ of the least squares (linear) regression line must be negative. Give a detailed interpretation of the slope of a least squares (linear) regression line. Give a detailed interpretation of the intercept of a least squares (linear)...
2) Two random variables have zero mean and variances of 16 and 36. Their correlation coefficient...
2) Two random variables have zero mean and variances of 16 and 36. Their correlation coefficient is 0.5. Find the variance of their sum, Z = X + Y. Find the variance of their difference, W = X - Y. Find the correlation of coefficient ρZ, W Define Covariance matrix K for X, Y, Z, W. Repeat a-d if X and Y are uncorrelated.
1. If the coefficient of determination is 25%, the correlation between two continuous variables is a)...
1. If the coefficient of determination is 25%, the correlation between two continuous variables is a) -5 b) 5 c) -.25 d) .25 e) a or b f) none of the above 2. To assess the correlation between height and weight, one should use a) spearman correlation b) regression equation c. pearson correlation d) point biserial correlation 3. For a computed r = -0.547, given a dataset of n = 16, alpha = .05, and two-tailed significance, one should fail...
A linear relationship exists between 2 quantitative variables. The correlation coefficient is -0.14. Which of the...
A linear relationship exists between 2 quantitative variables. The correlation coefficient is -0.14. Which of the following is true? A transformation should be done to try to make the correlation coefficient positive and closer to 1. There is no evidence to indicate a relationship exists between the two variables because of the negative correlation coefficient. This indicates a strong relationship between the two variables. This indicates a weak relationship between the two variables. This is impossible as correlation coefficients can’t...
You wish to determine if there is a linear correlation between the two variables at a...
You wish to determine if there is a linear correlation between the two variables at a significance level of α=0.10α=0.10. You have the following bivariate data set. x y 85.9 65.4 73.2 49.4 62.2 36.9 86.4 52.3 76 52.8 70.8 34 77.6 59.4 70.1 47.2 80.2 65.8 83.9 46.2 80.1 47 68.8 50.8 85.5 82.9 74.3 69.9 72.7 42.8 87.1 65.6 70.4 59.3 85.2 64.5 63.3 31.9 92.6 80.4 87 62.2 77.3 63.8 93.9 64.4 What is the correlation coefficient...
You wish to determine if there is a linear correlation between the two variables at a...
You wish to determine if there is a linear correlation between the two variables at a significance level of α=0.005α=0.005. You have the following bivariate data set. x y 39 52.7 29.7 82.5 32.1 72.4 39.4 98.3 31.1 51.4 43.1 51.8 35.5 43.8 29.5 90.8 38.4 100 36.8 7.4 34 67.5 28.3 97.2 32.2 82.2 29.9 28.9 What is the correlation coefficient for this data set? r = What is the p-value for this correlation coefficient? p-value = Your final...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT