Question

In: Physics

A wave on a string is described by the following equation: y = 115 cm2 cos...

A wave on a string is described by the following equation:

y = 115 cm2 cos ((pi/5.0 cm) x – (pi/12 s)t)

(a) What is the amplitude of this wave? (b) What is its wavelength? (c) What is its period? (d) What is its speed? (e) In which direction does the wave travel?

Solutions

Expert Solution

Summary: I compared the given wave to the standard equation of wave displacement to find the various parts of question.


Related Solutions

A sinusoidal wave in a string is described by the wave function y = 0.155 sin...
A sinusoidal wave in a string is described by the wave function y = 0.155 sin (0.525x - 46.5t) where x and y are in meters and t is in seconds. The mass per length of the string is 13.2 g/m. (a) Find the maximum transverse acceleration of an element of this string. (b) Determine the maximum transverse force on a 1.00-cm segment of the string. (c) State how the force found in part (b) compares with the tension in...
A wave on a string is described by y(x,t)=( 4.0 cm )×cos[2π(x/( 2.4 m )+t/( 0.30...
A wave on a string is described by y(x,t)=( 4.0 cm )×cos[2π(x/( 2.4 m )+t/( 0.30 s ))] , where x is in m and t is in s. Part B What is the wave speed? Express your answer in meters per second. Part C What is the wave frequency? Express your answer in hertz. Part D What is the wave length? Express your answer in meters. Part E At t = 0.75 s , what is the displacement of...
A mechanical wave is given by the equation: y(x,t) = 0.5 cos (62.8x – 15.7t) ,...
A mechanical wave is given by the equation: y(x,t) = 0.5 cos (62.8x – 15.7t) , Find: (1) Amplitude, frequency, wavelength? (2) The velocity of the wave? (3) The maximum velocity of the vibrations? (4) Write down the equation in the opposite direction?
The equation of a transverse wave on a string is y=(5mm)Sin[(10m-1)x+(200s-1)t]. The tension in the string...
The equation of a transverse wave on a string is y=(5mm)Sin[(10m-1)x+(200s-1)t]. The tension in the string is 50 N. (a) What is the wavelength of the wave? (b) What is the frequency of the wave? (c) What is the speed of the wave? (d) Find the linear density of this string.
The wave function for a harmonic wave on a string is y(x, t) = (0.0010 m)...
The wave function for a harmonic wave on a string is y(x, t) = (0.0010 m) sin((69.8 m-1)x + (309 s-1)t). (a) In what direction does this wave travel? +x-x     What is its speed? m/s (b) Find the wavelength of this wave. m Find its frequency. Hz Find its period. s (c) What is the maximum speed of any string segment? m/s
A wave in a string has a wave function given by: y (x, t) = (0.0300m)...
A wave in a string has a wave function given by: y (x, t) = (0.0300m) sin [(5.35 m^-1) x + (1.63 s^-1) t]   where t is expressed in seconds and x in meters. Determine: a) the amplitude of the wave b) the frequency of the wave c) wavelength of the wave d) the speed of the wave
1 The equation of a transverse wave on a string is ? = (2.0 ?) sin(20?...
1 The equation of a transverse wave on a string is ? = (2.0 ?) sin(20? − 600?). What is the wave speed of the wave and the linear density of the string if it has a tension of 15 ?? 2 A block is in simple harmonic motion on the end of a spring with its position given by ?(?) = ? cos(?? + ?). If ? = ?/5 ???, then at ? = 0 ? what percentage of...
The wave function for a traveling wave on a taut string is (in SI units) y(x,t)...
The wave function for a traveling wave on a taut string is (in SI units) y(x,t) = 0.375 sin (14pt - 2px + p/4) (a) What are the speed and direction of travel of the wave? speed _____ m/s direction_________ (positive x-direction, positive y-direction, positive z-direction, negative x-direction, negative y-direction, negative z-direction) (b) What is the vertical position of an element of the string at t = 0, x = 0.178 m? ________m (c) What is the wavelength of the...
Solve the differential equation: y' + 2y = cos 5x
Solve the differential equation: y' + 2y = cos 5x
Solve the following Differential Equation a. ?′ = sec ? cot ? b. ?′ = ??-y(cos(?2))...
Solve the following Differential Equation a. ?′ = sec ? cot ? b. ?′ = ??-y(cos(?2)) ; ?(0) = 0 c. ?′ = ?(2 − ?) d. ?2 + dy/dx = (y2 )/(1+x2) ; ?(0) = 1 also find the solution where ?(0) = 0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT