Question

In: Physics

A wave on a string is described by y(x,t)=( 4.0 cm )×cos[2π(x/( 2.4 m )+t/( 0.30...

A wave on a string is described by y(x,t)=( 4.0 cm )×cos[2π(x/( 2.4 m )+t/( 0.30 s ))] , where x is in m and t is in s. Part B What is the wave speed? Express your answer in meters per second. Part C What is the wave frequency? Express your answer in hertz. Part D What is the wave length? Express your answer in meters. Part E At t = 0.75 s , what is the displacement of the string at x = 0.20 m ? Express your answer in centimeters.

Solutions

Expert Solution

We know that   

y(x,t) =A cos(kx+wt). ....1

part B) We know that the wave speed

v=w/k

comparing equation 1 from the given equation so w=2/T=2/0.30s , k=2/ =2/2.4 m

v=(2/0.30s)/(2/2.4 m)

v=8.0 m/s answer

part C) The wave frequency

f=1/T

f=1/0.30

f =3.33 Hz

part D) As you know  , k=2/ =2/2.4 m

=2.4 m Answer

part E)

y(x,t)=( 4.0 cm )×cos[2π(x/( 2.4 m )+t/( 0.30 s ))]

here x=0.20 m , t=0.75 s

y(x,t)=( 4.0 cm )×cos[2π(0.20/( 2.4 m )+0.75/( 0.30 s ))]

y(x,t)=-3.464 cm


Related Solutions

The wave function for a harmonic wave on a string is y(x, t) = (0.0010 m)...
The wave function for a harmonic wave on a string is y(x, t) = (0.0010 m) sin((69.8 m-1)x + (309 s-1)t). (a) In what direction does this wave travel? +x-x     What is its speed? m/s (b) Find the wavelength of this wave. m Find its frequency. Hz Find its period. s (c) What is the maximum speed of any string segment? m/s
A wave on a string is described by the following equation: y = 115 cm2 cos...
A wave on a string is described by the following equation: y = 115 cm2 cos ((pi/5.0 cm) x – (pi/12 s)t) (a) What is the amplitude of this wave? (b) What is its wavelength? (c) What is its period? (d) What is its speed? (e) In which direction does the wave travel?
The displacement of a wave traveling in the negative x-direction is y(x,t)= ( 5.2 cm )cos(...
The displacement of a wave traveling in the negative x-direction is y(x,t)= ( 5.2 cm )cos( 6.0 x+ 73 t), where x is in m and t is in s. What is the frequency of this wave? What is the wavelength of this wave? What is the speed of this wave?
A certain transverse wave is described by y(x,t)=Bcos[2π(xL−tτ)], where B = 5.40 mm , L =...
A certain transverse wave is described by y(x,t)=Bcos[2π(xL−tτ)], where B = 5.40 mm , L = 28.0 cm , and τ = 4.00×10−2 s . a)Determine the wave's wavelength. b)Determine the wave's speed of propagation
A wave in a string has a wave function given by: y (x, t) = (0.0300m)...
A wave in a string has a wave function given by: y (x, t) = (0.0300m) sin [(5.35 m^-1) x + (1.63 s^-1) t]   where t is expressed in seconds and x in meters. Determine: a) the amplitude of the wave b) the frequency of the wave c) wavelength of the wave d) the speed of the wave
The wave function for a traveling wave on a taut string is (in SI units) y(x,t)...
The wave function for a traveling wave on a taut string is (in SI units) y(x,t) = 0.375 sin (14pt - 2px + p/4) (a) What are the speed and direction of travel of the wave? speed _____ m/s direction_________ (positive x-direction, positive y-direction, positive z-direction, negative x-direction, negative y-direction, negative z-direction) (b) What is the vertical position of an element of the string at t = 0, x = 0.178 m? ________m (c) What is the wavelength of the...
The function y(x, t) = (20.0 cm) cos(πx - 17πt), with x in meters and t...
The function y(x, t) = (20.0 cm) cos(πx - 17πt), with x in meters and t in seconds, describes a wave on a taut string. What is the transverse speed for a point on the string at an instant when that point has the displacement y = +17.0 cm? Number Enter your answer in accordance to the question statement Units Choose the answer from the menu in accordance to the question statement This answer has no units° (degrees)mkgsm/sm/s^2NJWN/mkg·m/s or N·sN/m^2...
A sinusoidal wave in a string is described by the wave function y = 0.155 sin...
A sinusoidal wave in a string is described by the wave function y = 0.155 sin (0.525x - 46.5t) where x and y are in meters and t is in seconds. The mass per length of the string is 13.2 g/m. (a) Find the maximum transverse acceleration of an element of this string. (b) Determine the maximum transverse force on a 1.00-cm segment of the string. (c) State how the force found in part (b) compares with the tension in...
Let f (t)  = { 7 0  ≤  t  ≤  2π cos(5t) 2π  <  t  ≤ ...
Let f (t)  = { 7 0  ≤  t  ≤  2π cos(5t) 2π  <  t  ≤  4π e3(t−4π) t  >  4π (a)  f (t) can be written in the form g1(t)  +  g2(t)U(t − 2π)  +  g3(t)U(t − 4π) where U(t) is the Heaviside function. Enter the functions g1(t), g2(t), and g3(t), into the answer box below (in that order), separated with commas. (b) Compute the Laplace transform of  f (t).
A mechanical wave is given by the equation: y(x,t) = 0.5 cos (62.8x – 15.7t) ,...
A mechanical wave is given by the equation: y(x,t) = 0.5 cos (62.8x – 15.7t) , Find: (1) Amplitude, frequency, wavelength? (2) The velocity of the wave? (3) The maximum velocity of the vibrations? (4) Write down the equation in the opposite direction?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT