Question

In: Chemistry

A 10.00 mL solution of 0.0500 M AgNO3 was titrated with 0.0250 M NaBr in the...

A 10.00 mL solution of 0.0500 M AgNO3 was titrated with 0.0250 M NaBr in the cell: S.C.E.(saturated calomel electrode) titration solution Ag (s). (Ksp AgBr(s) = 5.0e-13)

Find the cell voltage (v) when the volume of titrant added is 5.00 ml.

Find the equivalence volume (ml) of titrant added.

Calculate the cell voltage (v) when the volume of titrant added is 24.58 ml

Calculate the cell voltage (v) at the equivalence point.


.

Solutions

Expert Solution

Solution.

The scheme of the cell is S.C.E.|| titration solution | Ag(s)

Therefore, the cell voltage is

When 5 mL of the titrant is added, the concentration of silver ions is

The cell voltage is

The equivalence volume of titrant added can be found as

The cell voltage at the equivalence point will be determined by a solubility of AgBr.

The cell voltage is

When 24.58 mL of titrant has been added, the concentration of bromide-ions is

The concentration of silver ions is

The cell voltage is


Related Solutions

A 10.0 mL solution of 0.030 M AgNO3 was titrated with 0.015 M NaBr in the...
A 10.0 mL solution of 0.030 M AgNO3 was titrated with 0.015 M NaBr in the cell. S.C.E. || titration solution | Ag(s) Find the cell voltage for 0.4, 10.0, 20.0, and 27.0 mL of titrant. (The Ksp of AgBr = 5.0 ✕ 10−13.) 0.4 V 10.0 V 20.0 V 27.0 V
A solution containing 10.00 mL of 0.0500 M metal ion buffered to pH = 10.00 was...
A solution containing 10.00 mL of 0.0500 M metal ion buffered to pH = 10.00 was titrated with 0.0400 M EDTA. Calculate the fraction (αY4-) of free EDTA in the form Y4−. Keep 2 significant figures.
A 25.00 mL of 0.0500 M imidazole (B) solution was titrated with 0.1250 M HNO3. The...
A 25.00 mL of 0.0500 M imidazole (B) solution was titrated with 0.1250 M HNO3. The pKa of the imidazolium chloride (BH+) is 6.993. (a) what is the pH of the solution before adding any HNO3? (b) What is the pH of the solution after adding 5.00 mL of HNO3? (c) What is the pH of the solution after adding 10.00 mL of HNO3? (d) What is the pH of the solution after adding 12.00 mL of HNO3?
A solution containing 45.00 ml of 0.0500 M metal ion buffered to pH = 10.00 was...
A solution containing 45.00 ml of 0.0500 M metal ion buffered to pH = 10.00 was titrated with 0.0400 M EDTA. Answer the following questions and enter your results with numerical value only. Calculate the equivalence volume, Ve, in milliliters. Calculate the concentration (M) of free metal ion at V = 1/2 Ve. Calculate the fraction (αY4-) of free EDTA in the form Y4-. Keep 2 significant figures. If the formation constant (Kf) is 1012.00. Calculate the value of the...
A 83.0 mL sample of 0.0500 M HNO3 is titrated with 0.100 M KOH solution. Calculate...
A 83.0 mL sample of 0.0500 M HNO3 is titrated with 0.100 M KOH solution. Calculate the pH after the following volumes of base have been added. (a) 11.2 mL pH = _________ (b) 39.8 mL pH = __________    (c) 41.5 mL pH = ___________ (d) 41.9 mL pH = ____________    (e) 79.3 mL pH = _____________
35 mL of a 0.0250 M pyridine is titrated with 0.00 mL, 10.00mL 15.00mL 20.00 mL...
35 mL of a 0.0250 M pyridine is titrated with 0.00 mL, 10.00mL 15.00mL 20.00 mL and 25.00mL of a 0.0438 M HCl solution. Calulate the pH of the solution after each addition and sketch the resulting graph
Titration of a 15.0 mL solution of KOH requires 17.0 mL of 0.0250 M H2SO4 solution....
Titration of a 15.0 mL solution of KOH requires 17.0 mL of 0.0250 M H2SO4 solution. What is the molarity of the KOH solution? M=?
1. a. 0.0500 M of AgNO3 is used to titrate a 25.00-mL containing 0.1000 M sodium...
1. a. 0.0500 M of AgNO3 is used to titrate a 25.00-mL containing 0.1000 M sodium chloride (NaCl) and 0.05000 M potassium iodide (KI), what is the pAg of the solution after 15.00 mL of AgNO3 is added to the solution? Ksp, AgCl (s) = 1.82 x 10-10; Ksp, AgI(s) = 8.3*10-17. b. Same titration as in (a), what is the pAg of the solution after 25.00 mL of AgNO3 is added to the above solution? c. Same titration as...
Assume that 40.0 mL of a 0.0250 M solution of the protonated form of the amino...
Assume that 40.0 mL of a 0.0250 M solution of the protonated form of the amino acid valine (H2A+) (Figure 1) is titrated with 0.100 M NaOH. Part A Calculate the pH after addition of 10.0 mL of 0.100 M NaOH. Express your answer using three significant figures. Part B Calculate the pH after addition of 15.0 mL of 0.100 M NaOH. Express your answer using three significant figures. Part C Calculate the pH after addition of 20.0 mL of...
In the experiement, each flask containing a water sample, pipette 10.00 mL of the AgNO3 solution....
In the experiement, each flask containing a water sample, pipette 10.00 mL of the AgNO3 solution. Using a small graduated cylinder, carefully add 3.0 mL of Fe(NO3)3 solution and 2.0 mL of 6M HNO3 to each water sample. the trial is now ready for titration. Obtain approximately 120 mL of stock KSCN solution. Rinse out a clean buret with about 10 mL of KSCN at least twice, and discard the washing solution into a waste beaker.  From the calculation , number...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT