Question

In: Physics

a block slides down a frictionless inclined plane of height h=1m, making theta with the horizontal....

a block slides down a frictionless inclined plane of height h=1m, making theta with the horizontal. At the bottom of the plane, the block continues to move on a flat surface with a coefficient of friction u = 0.30. How far does the mass move on the flat surface?

Solutions

Expert Solution

Gravitational acceleration = g = 9.81 m/s2

Mass of the block = m

Height from which the block is released = h = 1 m

Angle the incline makes =

Speed of the block at the bottom of the incline = V

By conversation of energy the initial potential energy of the block is converted into the kinetic energy of the block at the bottom of the incline.

V = 4.43 m/s

Normal force on the block from the flat surface = N

N = mg

Coefficient of friction between the block and the flat surface = = 0.3

Friction force on the block = f

f = N

f = mg

Distance the block slides on the flat surface = L

By conservation of energy the kinetic energy of the block at the bottom of the incline is lost to the work done against friction as it slides on the flat surface.

L = 3.33 m

Distance the block moves on the flat surface = 3.33 m


Related Solutions

An inclined plane is sliding, and accelerating, on a horizontal frictionless surface. There is a block...
An inclined plane is sliding, and accelerating, on a horizontal frictionless surface. There is a block at rest on the sloping surface, held in place by static friction through the horizontal acceleration of the system. The coefficient of static friction between the block and the inclined plane is 0.615. The slope of the incline plane is 40.5 degrees with respect to the horizontal. What is minimum acceleration of the inclined plane for the square block not to slide? What is...
An inclined plane is sliding, and accelerating, on a horizontal frictionless surface. There is a block...
An inclined plane is sliding, and accelerating, on a horizontal frictionless surface. There is a block at rest on the sloping surface, held in place by a static friction through the horizontal acceleration of the system. the coefficient of static friction between the block and the inclined plane is 0.615. the slope of the incline plane is 42.5 degrees with respect to the horizontal. a) What is the minumum acceleration of the inclined plane for the square block not to...
If a block slides down an inclined plane having friction with a spring attached to the...
If a block slides down an inclined plane having friction with a spring attached to the horizontal plane at the bottom of the plane.Find the coefficine tof kinetic friction. mass of the block is 10 kg and the angle is 30 degrees the spring constant is 500 N/m
A block slides down a frictionless inclined ramp. If the ramp angle is 26° and its...
A block slides down a frictionless inclined ramp. If the ramp angle is 26° and its length is 29 m, find the speed of the block as it reaches the bottom of the ramp, assuming it started sliding from rest at the top.
A block with mass m = 17.2 kg slides down an inclined plane of slope angle...
A block with mass m = 17.2 kg slides down an inclined plane of slope angle 13.8o with a constant velocity. It is then projected up the same plane with an initial speed 4.05 m/s. How far up the incline will the block move before coming to rest?
A 1.50-kg block is on a frictionless, 30 degrees inclined plane. The block is attached to...
A 1.50-kg block is on a frictionless, 30 degrees inclined plane. The block is attached to a spring (k = 40.0N/m ) that is fixed to a wall at the bottom of the incline. A light string attached to the block runs over a frictionless pulley to a 60.0-g suspended mass. The suspended mass is given an initial downward speed of 1.40m/s. How far does it drop before coming to rest? (Assume the spring is unlimited in how far it...
A block of wood slides on a frictionless horizontal surface. It is attached to a spring...
A block of wood slides on a frictionless horizontal surface. It is attached to a spring and oscillates with a period of 0.8 s. A second block rests on top of the first. The coefficient of static friction between the two blocks is 0.25. If the amplitude of oscillations is 1.2 cm, will the block on the top slip? What is the greatest amplitude of oscillation for which the top block will not slip?
A block is placed on a plane inclined at 35 degrees relative to the horizontal. If...
A block is placed on a plane inclined at 35 degrees relative to the horizontal. If the bloc k slides down the plane with an acceleration of magnitude g/3, determine the coefficient of the kinetic friction between the block and plane.
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle ?...
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle ? = 31.2
a 15 kg rock slides down a frictionless icy hill of height h= 20.0 m, starting...
a 15 kg rock slides down a frictionless icy hill of height h= 20.0 m, starting at the top of speed on the ground that offers kinetic v0 = 9m/s. Once it reaches the bottom (Point C) it continues horizontally on the ground that offers kinetic friction with uk=0.2. After traveling a distance = 110m to reach point D, it begins compressing a spring with spring constant 2 N/m a. what is the speed of the rock when it reaches...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT