In: Statistics and Probability
Strength |
Percent Hardwood |
Strength |
Percent Hardwood |
160 |
10 |
181 |
20 |
171 |
15 |
188 |
25 |
175 |
15 |
193 |
25 |
182 |
20 |
195 |
28 |
184 |
20 |
200 |
30 |
X | Y | XY | X² | Y² |
10 | 160 | 1600 | 100 | 25600 |
15 | 171 | 2565 | 225 | 29241 |
15 | 175 | 2625 | 225 | 30625 |
20 | 182 | 3640 | 400 | 33124 |
20 | 184 | 3680 | 400 | 33856 |
20 | 181 | 3620 | 400 | 32761 |
25 | 188 | 4700 | 625 | 35344 |
25 | 193 | 4825 | 625 | 37249 |
28 | 195 | 5460 | 784 | 38025 |
30 | 200 | 6000 | 900 | 40000 |
Ʃx = | Ʃy = | Ʃxy = | Ʃx² = | Ʃy² = |
208 | 1829 | 38715 | 4684 | 335825 |
Sample size, n = | 10 |
x̅ = Ʃx/n = 208/10 = | 20.8 |
y̅ = Ʃy/n = 1829/10 = | 182.9 |
SSxx = Ʃx² - (Ʃx)²/n = 4684 - (208)²/10 = | 357.6 |
SSyy = Ʃy² - (Ʃy)²/n = 335825 - (1829)²/10 = | 1300.9 |
SSxy = Ʃxy - (Ʃx)(Ʃy)/n = 38715 - (208)(1829)/10 = | 671.8 |
Slope, b = SSxy/SSxx = 671.8/357.6 = 1.8786353
y-intercept, a = y̅ -b* x̅ = 182.9 - (1.87864)*20.8 = 143.82438
Regression equation :
ŷ = 143.8244 + (1.8786) x
Predicted value of y at x = 10
ŷ = 143.8244 + (1.8786) * 10 = 162.6107
Significance level, α = 0.05
Critical value, t_c = T.INV.2T(0.05, 8) = 2.306
Sum of Square error, SSE = SSyy -SSxy²/SSxx = 1300.9 - (671.8)²/357.6 = 38.832774
Standard error, se = √(SSE/(n-2)) = √(38.83277/(10-2)) = 2.20320
95% confidence interval for the mean strength at 10% hardwood:
95% confidence interval for a single observation at 10% hardwood: