In: Finance
Alan is taking out a $15,000 loan from a bank to renovate his house. The bank is charging him an interest rate of 4% p.a., monthly compounding. The loan has to be repaid in 60 equal monthly instalments, with the first payment due a month from now).
(a) (2 points) How much is each monthly payment?
(b) (3 points) For the 24th payment (i.e., the payment that he will make 2 years
from now), what is the ratio between (i) the portion of that payment that represents interest and (ii) the portion of that payment that represents principal repayment?
EMI :
EMI or Instalment is sum of money due as one of several equal
payments for loan/ Mortgage taken today, spread over an agreed
period of time.
EMI = Loan / PVAF (r%, n)
PVAF = SUm [ PVF(r%, n) ]
PVF(r%, n) = 1 / ( 1 + r)^n
r = Int rate per period
n = No. of periods
How to calculate PVAF using Excel:
=PV(Rate,NPER,-1)
Rate = Disc Rate
NPER = No.of periods
Particulars | Amount |
Loan Amount | $ 15,000.00 |
Int rate per Month | 0.3333% |
No. of Months | 60 |
EMI = Loan Amount / PVAF (r%, n)
Where r is Int rate per Month & n is No. of Months
= $ 15000 / PVAF (0.0033 , 60)
= $ 15000 / 54.2991
= $ 276.25
Amortization schedule for first 24 Months:
Period | Opening Bal | EMI | Int | Principal Repay | Closing Outstanding |
1 | $ 15,000.00 | $ 276.25 | $ 50.00 | $ 226.25 | $ 14,773.75 |
2 | $ 14,773.75 | $ 276.25 | $ 49.25 | $ 227.00 | $ 14,546.75 |
3 | $ 14,546.75 | $ 276.25 | $ 48.49 | $ 227.76 | $ 14,318.99 |
4 | $ 14,318.99 | $ 276.25 | $ 47.73 | $ 228.52 | $ 14,090.47 |
5 | $ 14,090.47 | $ 276.25 | $ 46.97 | $ 229.28 | $ 13,861.19 |
6 | $ 13,861.19 | $ 276.25 | $ 46.20 | $ 230.04 | $ 13,631.15 |
7 | $ 13,631.15 | $ 276.25 | $ 45.44 | $ 230.81 | $ 13,400.34 |
8 | $ 13,400.34 | $ 276.25 | $ 44.67 | $ 231.58 | $ 13,168.76 |
9 | $ 13,168.76 | $ 276.25 | $ 43.90 | $ 232.35 | $ 12,936.41 |
10 | $ 12,936.41 | $ 276.25 | $ 43.12 | $ 233.13 | $ 12,703.28 |
11 | $ 12,703.28 | $ 276.25 | $ 42.34 | $ 233.90 | $ 12,469.38 |
12 | $ 12,469.38 | $ 276.25 | $ 41.56 | $ 234.68 | $ 12,234.69 |
13 | $ 12,234.69 | $ 276.25 | $ 40.78 | $ 235.47 | $ 11,999.23 |
14 | $ 11,999.23 | $ 276.25 | $ 40.00 | $ 236.25 | $ 11,762.98 |
15 | $ 11,762.98 | $ 276.25 | $ 39.21 | $ 237.04 | $ 11,525.94 |
16 | $ 11,525.94 | $ 276.25 | $ 38.42 | $ 237.83 | $ 11,288.11 |
17 | $ 11,288.11 | $ 276.25 | $ 37.63 | $ 238.62 | $ 11,049.49 |
18 | $ 11,049.49 | $ 276.25 | $ 36.83 | $ 239.42 | $ 10,810.08 |
19 | $ 10,810.08 | $ 276.25 | $ 36.03 | $ 240.21 | $ 10,569.86 |
20 | $ 10,569.86 | $ 276.25 | $ 35.23 | $ 241.01 | $ 10,328.85 |
21 | $ 10,328.85 | $ 276.25 | $ 34.43 | $ 241.82 | $ 10,087.03 |
22 | $ 10,087.03 | $ 276.25 | $ 33.62 | $ 242.62 | $ 9,844.40 |
23 | $ 9,844.40 | $ 276.25 | $ 32.81 | $ 243.43 | $ 9,600.97 |
24 | $ 9,600.97 | $ 276.25 | $ 32.00 | $ 244.24 | $ 9,356.73 |
Opening Balance = Previous month closing balance
EMI = Instalment calculated
Int = Opening Balance * Int Rate
Principal repay = Instalment - Int
Closing Balance = Opening balance - Principal Repay
% of Payment towards Int = Int / EMI
= $ 32 / $ 276.25
= 0.1158 I.e 11.58%
% of Payment towards Principal = Principal Reapyment / EMI
= $ 244.24 / 276.25
= 0.8842 I.e 88.42%