In: Finance
Paul takes out a 15-year loan of 250,000 from his bank. The bank charges interest at 4% p.a. compounded half-yearly. During the first 10 years, Paul repays $11,000 at the end of each 6 months. After that period, Paul will repay $X at the end of each year for the remaining 5 years. Which of the following can be used to calculate $X.
Loan Amortization Schedule:
Period | Opening Balance | Instalment | Int | Principal Repay | Closing Balance |
1 | $ 2,50,000.00 | $ 11,000.00 | $ 5,000.00 | $ 6,000.00 | $ 2,44,000.00 |
2 | $ 2,44,000.00 | $ 11,000.00 | $ 4,880.00 | $ 6,120.00 | $ 2,37,880.00 |
3 | $ 2,37,880.00 | $ 11,000.00 | $ 4,757.60 | $ 6,242.40 | $ 2,31,637.60 |
4 | $ 2,31,637.60 | $ 11,000.00 | $ 4,632.75 | $ 6,367.25 | $ 2,25,270.35 |
5 | $ 2,25,270.35 | $ 11,000.00 | $ 4,505.41 | $ 6,494.59 | $ 2,18,775.76 |
6 | $ 2,18,775.76 | $ 11,000.00 | $ 4,375.52 | $ 6,624.48 | $ 2,12,151.27 |
7 | $ 2,12,151.27 | $ 11,000.00 | $ 4,243.03 | $ 6,756.97 | $ 2,05,394.30 |
8 | $ 2,05,394.30 | $ 11,000.00 | $ 4,107.89 | $ 6,892.11 | $ 1,98,502.19 |
9 | $ 1,98,502.19 | $ 11,000.00 | $ 3,970.04 | $ 7,029.96 | $ 1,91,472.23 |
10 | $ 1,91,472.23 | $ 11,000.00 | $ 3,829.44 | $ 7,170.56 | $ 1,84,301.67 |
11 | $ 1,84,301.67 | $ 11,000.00 | $ 3,686.03 | $ 7,313.97 | $ 1,76,987.71 |
12 | $ 1,76,987.71 | $ 11,000.00 | $ 3,539.75 | $ 7,460.25 | $ 1,69,527.46 |
13 | $ 1,69,527.46 | $ 11,000.00 | $ 3,390.55 | $ 7,609.45 | $ 1,61,918.01 |
14 | $ 1,61,918.01 | $ 11,000.00 | $ 3,238.36 | $ 7,761.64 | $ 1,54,156.37 |
15 | $ 1,54,156.37 | $ 11,000.00 | $ 3,083.13 | $ 7,916.87 | $ 1,46,239.50 |
16 | $ 1,46,239.50 | $ 11,000.00 | $ 2,924.79 | $ 8,075.21 | $ 1,38,164.29 |
17 | $ 1,38,164.29 | $ 11,000.00 | $ 2,763.29 | $ 8,236.71 | $ 1,29,927.57 |
18 | $ 1,29,927.57 | $ 11,000.00 | $ 2,598.55 | $ 8,401.45 | $ 1,21,526.13 |
19 | $ 1,21,526.13 | $ 11,000.00 | $ 2,430.52 | $ 8,569.48 | $ 1,12,956.65 |
20 | $ 1,12,956.65 | $ 11,000.00 | $ 2,259.13 | $ 8,740.87 | $ 1,04,215.78 |
Opening Balance = Previous month closing balance
EMI = Instalment calculated
Int = Opening Balance * Int Rate
Principal repay = Instalment - Int
Closing Balance = Opening balance - Principal Repay
Balance to be repaid after 10 Years is 104215.78
Let x be the CF for balance 10 periods ( 5 * 2 periods )
PV of Annuity:
Annuity is series of cash flows that are deposited at regular
intervals for specific period of time.
PV of Annuity = Cash Flow * [ 1 - [(1+r)^-n]] /r
r - Int rate per period
n - No. of periods
Particulars | Amount |
PV Annuity | $ 1,04,215.78 |
Int Rate | 2.000% |
Periods | 10 |
Cash Flow = PV of Annuity / [ 1 - [(1+r)^-n]] /r
= $ 104215.78 / [ 1 - [(1+0.02)^-9]] /0.02
= $ 104215.78 / [ 1 - [(1.02)^-9]] /0.02
= $ 104215.78 / [ 1 - 0.8203 ] /0.02
= $ 104215.78 / [0.1797 / 0.02 ]
= $ 104215.78 / 8.9826
= $ 11601.98
Balance to be paid for each period during balance 10 periods is
$11601.98