Question

In: Physics

A spherical capacitor has vacuum between its conducting shells and a capacitance of 125 pF. The...

A spherical capacitor has vacuum between its conducting shells and a capacitance of 125 pF. The outer shell has inner radius 9.00 cm.

a. If the potential of the inner shell is 355 V higher than the potential of the outer shell, what is the surface charge density on the outer shell?

b. If the potential of the inner shell is 355 V higher than the potential of the outer shell, what is the surface charge density on the inner shell?

Solutions

Expert Solution

First we are going to write the equation for potential for both surfaces.Then we will write the equation for capacitance of spherical capacitor which depend on only geometrical factors of spherical capacitor. From that we will get the radius of inner shell. And lastly putting this value in the equation of potential on the inner Shell's surface we will get the value of charge on inner shell.Then by using formula surface charge density equal to charge/surface area, we can easily calculate surface charge densities.


Related Solutions

A capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere...
A capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere has radius 10.0cm , and the outer sphere has radius 16.0cm . A potential difference of 150V is applied to the capacitor. 1-What is the energy density at r = 10.1cm , just outside the inner sphere? (J/m^3) 2-What is the energy density at r = 15.9cm , just inside the outer sphere?
S-16) a) Design a parallel plate capacitor with a capacitance of 5 pF with vacuum between...
S-16) a) Design a parallel plate capacitor with a capacitance of 5 pF with vacuum between the plates. b) What will change if a dielectric is placed between the plates with dielectric constant of 2. Alternate problem 16 (your choice, do the above capacitor problem or the resistor problem below) S-16r) a) Given that the resistivity of carbon in graphite form is 5 x 10-5 Ω*m, design a 10 Ω resister. Hint: choose a cylindrical shape and specify the length...
A parallel-plate capacitor has capacitance C = 15.7 pF when the volume between the plates is...
A parallel-plate capacitor has capacitance C = 15.7 pF when the volume between the plates is filled with air. The plates are circular, with radius 2.50 cm. The capacitor is connected to a battery and a charge of magnitude 28.0 pC goes into each plate. With the capacitor still connected to the battery, a slab of dielectric is inserted between the plates, completely filling the space between the plates. After the dielectric has been inserted, the charge on each plate...
A parallel-plate capacitor has capacitance C0 = 7.80 pF when there is air between the plates....
A parallel-plate capacitor has capacitance C0 = 7.80 pF when there is air between the plates. The separation between the plates is 1.80 mm. 1- What is the maximum magnitude of charge that can be placed on each plate if the electric field in the region between the plates is not to exceed 3.00×104 V/mV/m? Express your answer with the appropriate units. 2- A dielectric with KKK = 2.40 is inserted between the plates of the capacitor, completely filling the...
A parallel-plate air-filled capacitor has a capacitance of 335 pF. If each of its plates has...
A parallel-plate air-filled capacitor has a capacitance of 335 pF. If each of its plates has an area of 0.025 m2, what is the separation? If the region between the plates is now filled with germanium, what is the capacitance?
Consider a spherical capacitor consisting of two concentric spherical shells of radii R1 and R2 that...
Consider a spherical capacitor consisting of two concentric spherical shells of radii R1 and R2 that carry surface charge densities of σ0 and –σ0, respectively. The capacitor is filled with a linear but inhomogeneous dielectric whose relative permittivity is a function of distance from the center of the sphere εr = εr (r). (a) If energy density inside the capacitor (R1< r < R2) is constant and εr (R2) = 2, find εr (r). (b) Find the polarization P within...
A Spherical Capacitor with two concentric shells with radii a and b with a<b. The volume...
A Spherical Capacitor with two concentric shells with radii a and b with a<b. The volume between the shells contains a vacuum and the inner and outer shells hold charges +Q and -Q respectively. 1) Use Gauss law to callculate the displacement field D between the spheres. 2) What is the capacitance of this configuration? 3) If the volume is filled with a dialectric with relaltive permittivity, how does the capacitance change?
A capacitor consists of two concentric spherical shells. The outer radius of the inner shell is...
A capacitor consists of two concentric spherical shells. The outer radius of the inner shell is a = 0.1 m and the inner radius of the outer shell is b = 0.2 m. a. What is the capacitance, C, of this capacitor? b. Suppose the maximum possible electric field at the outer surface of the inner shell before the air starts to ionize E max(r=a) = 3.0*10^6 V/m . What is the maximum possible charge on the inner capacitor? c....
Concentric conducting spherical shells carry charges Q and –Q, respectively (see below). The inner shell has...
Concentric conducting spherical shells carry charges Q and –Q, respectively (see below). The inner shell has negligible thickness. Determine the electric field for (a) r < a; (b) a < r < b; (c) b < r < c; and (d) r > c. Please explained as much as you can, thank you.
Two isolated, concentric, conducting spherical shells have radii R1 = 0.470 m and R2 = 1.00...
Two isolated, concentric, conducting spherical shells have radii R1 = 0.470 m and R2 = 1.00 m, uniform charges q1 = +1.50 μC and q2 = +2.00 μC, and negligible thicknesses. What is the magnitude of the electric field E at radial distance (a) r = 4.70 m, (b) r = 0.610 m, and (c) r = 0.220 m? With V = 0 at infinity, what is V at (d) r = 4.70 m, (e) r = 1.00 m, (f)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT