Question

In: Physics

A 14 g circular annulus of outer radius 41.8 cm and inner radius 26 cm makes...

A 14 g circular annulus of outer radius 41.8 cm and inner radius 26 cm makes small oscillations on an axle through its outer edge perpendicular to its face.

(a) Find its frequency of oscillation.


(b) Find the frequency of oscillation of a thin ring of the same outer radius and mass.


(c) Find the frequency of oscillation of a solid disc of the same outer radius, thickness, and density.

Solutions

Expert Solution


Related Solutions

A 12 g circular annulus of outer radius 43.3 cm and inner radius 32.4 cm makes...
A 12 g circular annulus of outer radius 43.3 cm and inner radius 32.4 cm makes small oscillations on an axle through its outer edge perpendicular to its face. (a) Find its frequency of oscillation. (b) Find the frequency of oscillation of a thin ring of the same outer radius and mass. (c) Find the frequency of oscillation of a solid disc of the same outer radius, thickness, and density.
A 11 g circular annulus of outer radius 47 cm and inner radius 35.2 cm makes...
A 11 g circular annulus of outer radius 47 cm and inner radius 35.2 cm makes small oscillations on an axle through its outer edge perpendicular to its face. (a) Find its frequency of oscillation. (b) Find the frequency of oscillation of a thin ring of the same outer radius and mass. (c) Find the frequency of oscillation of a solid disc of the same outer radius, thickness, and density.
3. Assume an annulus of inner radius r1 and outer radius r2. The inner surface is...
3. Assume an annulus of inner radius r1 and outer radius r2. The inner surface is at T1, the outer surface at T2, T1 > T2. Assume heat transfer between the surfaces by conduction, with a variable conductivity, k = a + bT, develop an expression for the temperature in the material of the annulus.
A solid spherical shell with a 12.0 cm inner radius and 15.0 cm outer radius is...
A solid spherical shell with a 12.0 cm inner radius and 15.0 cm outer radius is filled with water. A heater inside the water maintains the water at a constant temperature of 350 K. The outer surface of the shell is maintained at 280 K. The shell is made of Portland cement, which has a thermal conductivity of 0.29 W/(mK). (a) Starting from the basic equation for thermal conduction, derive the rate at which heat flows out of the water....
A long circular copper pipe (thermal diffusivity 111 mm2/s) with inner radius 1 cm and outer...
A long circular copper pipe (thermal diffusivity 111 mm2/s) with inner radius 1 cm and outer radius 1.2 cm is placed in an ice bath (0◦C) for a very long time. Then, at time t = 0, boiling water (100◦C) beings to flow through the pipe. Find the temperature of the pipe as a function of the radius r and the time t. Note any assumptions that you make.
A nonconducting spherical shell of inner radius a = 2.00 cm and outer radius b =...
A nonconducting spherical shell of inner radius a = 2.00 cm and outer radius b = 2.40 cm has (within its thickness) a positive volume charge density p = A/r, where A is a constant and r is the distance from the center of the shell. In addition, a small ball of charge q = 4.5 x 10 ^ -14 C is located at the center of that center. Find the total charge of the shell.
A toroidal solenoid (see the figure ) has inner radius 14.1cmand outer radius 18.6 cm...
A toroidal solenoid (see the figure ) has inner radius 14.1cm and outer radius 18.6 cm . The solenoid has 270 turns and carries a current of 7.30 A. Part A What is the magnitude of the magnetic field at 11.8 cm from the center of the torus? Part B What is the magnitude of the magnetic field at 16.3 cm from the center of the torus? Part C What is the magnitude of the magnetic field at 20.4 cm from the center of the torus?
A hollow, conducting sphere with an outer radius of .250 m and an inner radius of...
A hollow, conducting sphere with an outer radius of .250 m and an inner radius of .200 m has a uniform surface charge density of -6.37 muC/me2.When a charge is now introduced at the center of the cavity inside the sphere, the new charge density on the outside of the sphere is -4.46 muC/me2. What is the charge at the center of the cavity?
A hollow, conducting sphere with an outer radius of 0.240 m and an inner radius of...
A hollow, conducting sphere with an outer radius of 0.240 m and an inner radius of 0.200 m has a uniform surface charge density of +6.37 × 10−6 C/m2. A charge of -0.400 μC is now introduced into the cavity inside the sphere. What is the new charge density on the outside of the sphere? Express your answer with the appropriate units. Calculate the strength of the electric field just outside the sphere. Express your answer with the appropriate units....
A spherical conductor has a radius of 14 cm and a charge of 26 micro columns....
A spherical conductor has a radius of 14 cm and a charge of 26 micro columns. Calculate the electric field (vector) and the electrical potential at a). R=10 cm from center b). R= 20 cm fromcenter c). R=14 cm center Please show all of your work!
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT