Question

In: Math

Is the following map linear? a) F(x1,x2,x3)=(0,0) b) L:R2→R2 defined by L(x1,x2)=(3x1−2x2,x2) c) f:R→R defined by...

Is the following map linear?

a) F(x1,x2,x3)=(0,0)

b) L:R2→R2 defined by L(x1,x2)=(3x1−2x2,x2)

c) f:R→R defined by f(x)=2x

Solutions

Expert Solution

All the three maps are Linear here


Related Solutions

Let T: R2 -> R2 be a linear transformation defined by T(x1 , x2) = (x1...
Let T: R2 -> R2 be a linear transformation defined by T(x1 , x2) = (x1 + 2x2 , 2x1 + 4x2) a. Find the standard matrix of T. b. Find the ker(T) and nullity (T). c. Is T one-to-one? Explain.
Consider the linear system of equations below 3x1 − x2 + x3 = 1 3x1 +...
Consider the linear system of equations below 3x1 − x2 + x3 = 1 3x1 + 6x2 + 2x3 = 0 3x1 + 3x2 + 7x3 = 4 i. Use the Gauss-Jacobi iterative technique with x (0) = 0 to find approximate solution to the system above up to the third step ii. Use the Gauss-Seidel iterative technique with x (0) = 0 to find approximate solution to the third step
3. Given is the function f : Df → R with F(x1, x2, x3) = x...
3. Given is the function f : Df → R with F(x1, x2, x3) = x 2 1 + 2x 2 2 + x 3 3 + x1 x3 − x2 + x2 √ x3 . (a) Determine the gradient of function F at the point x 0 = (x 0 1 , x0 2 , x0 3 ) = (8, 2, 4). (b) Determine the directional derivative of function F at the point x 0 in the direction given...
Consider the following LP model.Max  Z = 3x1 - 4x2 + x3 subject to     x1 + x2 +...
Consider the following LP model.Max  Z = 3x1 - 4x2 + x3 subject to     x1 + x2 + x3 >= 9            2x1 + x2 + x3<= 12 x1 + x2         = 5       x1, x2, x3 >= 0 Change it to standard form. Obtain all the basic solutions and indicate which ones are basic feasible solutions and write down the corresponding corner points. For each basic solution, you have to obtain the values of all the variables. Obtain the solution of the LP...
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if...
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if 1<X1<2 -1<X2<0 -X2-1<X3<0                         0 otherwise Find Cov(X2, X3)
Consider the following quadratic forms q(x1, x2) = 3x1^2 − 6x1x2 + 11x2^2 and r(x1, x2,...
Consider the following quadratic forms q(x1, x2) = 3x1^2 − 6x1x2 + 11x2^2 and r(x1, x2, x3) = x1^2 − x2^2+x3^2+ 2x1x2 − 6x1x3+2x2x3, on R 2 and R 3 , respectively. In both cases do the following. (a) Find the symmetric matrix A representing the quadratic form. (b) Find a corresponding orthogonal matrix P of eigenvectors of that matrix. (c) Write down the maximum and minimum values of the quadratic form over the unit vectors (in R 2 and...
Let X = ( X1, X2, X3, ,,,, Xn ) is iid, f(x, a, b) =...
Let X = ( X1, X2, X3, ,,,, Xn ) is iid, f(x, a, b) = 1/ab * (x/a)^{(1-b)/b} 0 <= x <= a ,,,,, b < 1 then, find a two dimensional sufficient statistic for (a, b)
Consider the linear system of equations 2x1 − 6x2 − x3 = −38 −3x1 − x2...
Consider the linear system of equations 2x1 − 6x2 − x3 = −38 −3x1 − x2 + 7x3 = −34 −8x1 + x2 − 2x3 = −20 With an initial guess x (0) = [0, 0, 0]T solve the system using Gauss-Seidel method.
let X1, X2, X3 be random variables that are defined as X1 = θ + ε1...
let X1, X2, X3 be random variables that are defined as X1 = θ + ε1 X2 = 2θ + ε2 X3 = 3θ + ε3 ε1, ε2, ε3 are independent and the mean and variance are the following random variable E(ε1) = E(ε2) = E(ε3) = 0 Var(ε1) = 4 Var(ε2) = 6 Var(ε3) = 8 What is the Best Linear Unbiased Estimator(BLUE) when estimating parameter θ from the three samples X1, X2, X3
Consider the TOYCO model given below: TOYCO Primal: max z=3x1+2x2+5x3 s.t. x1 + 2x2 + x3...
Consider the TOYCO model given below: TOYCO Primal: max z=3x1+2x2+5x3 s.t. x1 + 2x2 + x3 ? 430 (Operation 1) 3x1 + 2x3 ? 460 (Operation 2) x1 + 4x2 ? 420 (Opeartion 3 ) x1, x2, x3 ?0 Optimal tableau is given below: basic x1 x2 x3 x4 x5 x6 solution z 4 0 0 1 2 0 1350 x2 -1/4 1 0 1/2 -1/4 0 100 x3 3/2 0 1 0 1/2 0 230 x6 2 0 0...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT