Question

In: Economics

Calculate the returns to scale for the following functions: a) f(x1,x2)= e^(ax1) + bx2^2 b) f(x1,...

Calculate the returns to scale for the following functions:

a) f(x1,x2)= e^(ax1) + bx2^2

b) f(x1, x2,x3)= a*sqrt(x1x2) + x3^b

Solutions

Expert Solution

Answer a) F(X1,X2) = e^(a.X1) + b.(X2^2)

At X1=X2= 1

F(X1,X2) = e^a + b

At X1=X2=2

F(X1,X2) = e^(2a) + b(4)

With the Doubling of inputs X1 and X2 the output F(X1,X2) more than doubled so, it has Increasing returns to scale. [ Double of e^a+b is 2(e^a+b) and e^(2a) +4b is greater than this]

Answer b) F(X1,X2,X3)= a√X1.√X2 + (X3)^b

At X1=X2=X3= 1

F(X1,X2,X3)=a+1

At X1=X2=X3=2

F(X1,X2,X3) = a√4 + 2^b

F(X1,X2,X3) = 2a+ 2b or 2(a+b)

Since with the Doubling of inputs X1,X2 and X3 the output F(X1,X2,X3) exactly doubled so it has constant returns to scale.[ Double of (a+1) is 2(a+1) and that is what we are getting with Doubling of inputs]


Related Solutions

2.2.8. Suppose X1 and X2 have the joint pdf f(x1, x2) = " e−x1 e−x2 x1...
2.2.8. Suppose X1 and X2 have the joint pdf f(x1, x2) = " e−x1 e−x2 x1 > 0, x2 > 0 0 elsewhere . For constants w1 > 0 and w2 > 0, let W = w1X1 + w2X2. (a) Show that the pdf of W is fW (w) = " 1 w1− w2 (e−w/w1 − e−w/w2) w > 0 0 elsewhere . (b) Verify that fW (w) > 0 for w > 0. (c) Note that the pdf fW...
If the joint probability distribution of X1 and X2 is given by: f(X1, X2) = (X1*X2)/36...
If the joint probability distribution of X1 and X2 is given by: f(X1, X2) = (X1*X2)/36 for X1 = 1, 2, 3 and X2 = 1, 2, 3, find the joint probability distribution of X1*X2 and the joint probability distribution of X1/X2.
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the...
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the conditional densities (pdf) of X1|X2 = x2 and X2|X1 = x1. (b) Find the conditional expectation and variance of X1|X2 = x2 and X2|X1 = x1. (c) Compare the probabilities P(0 < X1 < 1/2|X2 = 3/4) and P(0 < X1 < 1/2). (d) Suppose that Y = E(X2|X1). Verify that E(Y ) = E(X2), and that var(Y ) ≤ var(X2).
Suppose that a firm has the p production function f(x1; x2) = sqrt(x1) + x2^2. (a)...
Suppose that a firm has the p production function f(x1; x2) = sqrt(x1) + x2^2. (a) The marginal product of factor 1 (increases, decreases, stays constant) ------------ as the amount of factor 1 increases. The marginal product of factor 2 (increases, decreases, stays constant) ----------- as the amount of factor 2 increases. (b) This production function does not satisfy the definition of increasing returns to scale, constant returns to scale, or decreasing returns to scale. How can this be? (c)Find...
(1) z=ln(x^2+y^2), y=e^x. find ∂z/∂x and dz/dx. (2) f(x1, x2, x3) = x1^2*x2+3sqrt(x3), x1 = sqrt(x3),...
(1) z=ln(x^2+y^2), y=e^x. find ∂z/∂x and dz/dx. (2) f(x1, x2, x3) = x1^2*x2+3sqrt(x3), x1 = sqrt(x3), x2 = lnx3. find ∂f/∂x3, and df/dx3.
a) Do the following production functions exhibit constant returns to scale, increasing returns to scale, or...
a) Do the following production functions exhibit constant returns to scale, increasing returns to scale, or decreasing returns to scale? For full credit, show why. 1) Q= 10L^ 0.5K^0.3 2) Q= 10L^0.5K^0.5 3) Q= 10L^0.5K^0.7 4) Q= min{K, L} b) Which objects pin down a_LC and a_KC? Explain carefully. c) Why does labor being mobile across sectors automatically imply revenue maximization for firms? Explain carefully.
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if...
Let X1, X2, X3 be continuous random variables with joint pdf f(X1, X2, X3)= 2 if 1<X1<2 -1<X2<0 -X2-1<X3<0                         0 otherwise Find Cov(X2, X3)
Is the following map linear? a) F(x1,x2,x3)=(0,0) b) L:R2→R2 defined by L(x1,x2)=(3x1−2x2,x2) c) f:R→R defined by...
Is the following map linear? a) F(x1,x2,x3)=(0,0) b) L:R2→R2 defined by L(x1,x2)=(3x1−2x2,x2) c) f:R→R defined by f(x)=2x
Prove E(X1 + X2 | Y=y) = E(X1 | Y=y) + E(X2 |Y=y). Prove both cases...
Prove E(X1 + X2 | Y=y) = E(X1 | Y=y) + E(X2 |Y=y). Prove both cases where all random variables are discrete and also when all random variables are continuous.
(a) Calculate the marginal utility of x1 and x2 for the following utility function u (x1;...
(a) Calculate the marginal utility of x1 and x2 for the following utility function u (x1; x2) = x 1 x 2 (b) What must be true of and for the consumer to have a positive marginal utility for each good? (c) Does the utility function above exhibit a diminishing marginal rate of substitution? Assume that and satisfy the conditions from Part b. (Hint: A utility function exhibits a diminishing marginal rate of substitution if the derivative of the marginal...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT