Solution:
Let,
I=∮c(z−1)(z−2)2sinπz2+cosπz2dz
Poles of the integrand are given by putting the denominator equal to zero.
(z−1)(z−2)2=0⇒z=1,2
The integrand has two poles at z = 1, 2
both the poles z = 1, and z = 2.
I=∮c(z−1)(z−2)2sinπz2+cosπz2dz=∮(z−1)(z−2)2f(z)dz
Using partial fraction method,
(z−1)(z−2)21=(z−1)A+(z−2)B+(z−2)2C
By solving the partial fraction, we get
A=−1,B=21,C=21
II=∮(z−1)−1f(z)dz+2(z−2)f(z)dz+2(z−2)2f(z)dz=I1+I2+I3
Applying Cauchy's integral formulae
∮z−af(z)dz∮(z−a)2f(z)dz=2πif(a)=2πif′(a)
I1=∮(z−1)−1f(z)dz=−2πi[sinπ+cosπ]=2πi
I2=∮2(z−2)f(z)dz=2×(2πi[sin4π+cos4π])=4πi
I3=∮2(z−2)2f(z)dz=2×2πi[4π(cos4π−sin4π)]=16π2i
Total Residue is given by,
I=∮c(z−1)(z−2)2sinπz2+cosπz2dz=2πi+4πi+16π2i=2πi(3+8π)
I=2πi(3+8π)