In: Statistics and Probability
Question A. The below data correspond to a two-factor ANOVA. (Independent-measures)
Factor B |
|||||
Factor A |
Level 1 |
Level 2 |
|||
Level 1 |
M = 15.8 T = 79 SS = 18.8 n = 5 |
M=7 T = 35 SS = 10 n = 5 |
Mrow1 = Trow1 = nrow1 = 10 |
N = G = ΣX2 = 3781 k = 4 |
|
Level 2 |
M = 20.8 T = 104 SS = 8.8 n = 5 |
M = 3.8 T = 19 SS = 14.8 n = 5 |
Mrow2 = Trow2 = nrow2 = 10 |
||
Mcol1 = Tcol1 = ncol1 = 10 |
Mcol2= Tcol2 = ncol2 = 10 |
Factor B | |||||
Factor A | Level 1 | Level 2 | |||
Level 1 | M = 15.8 | M=7 | Mrow1 = 11.4 | N = 40 | |
T = 79 | T = 35 | Trow1 = 114 | G = 237 | ||
SS = 18.8 | SS = 10 | nrow1 = 10 | ΣX2 = 3781 | ||
n = 5 | n = 5 | k = 4 | |||
Level 2 | M = 20.8 | M = 3.8 | Mrow2 = 12.3 | ||
T = 104 | T = 19 | Trow2 = 123 | |||
SS = 8.8 | SS = 14.8 | nrow2 = 10 | |||
n = 5 | n = 5 | ||||
Mcol1 = 18.3 | Mcol2= 5.4 | ||||
Tcol1 = 183 | Tcol2 = 54 | ||||
ncol1 = 10 | ncol2 = 10 |
a) Null and alternative hypothesis for Factor A:
Ho: There is no main effect due to factor A.
Ho: There is a main effect due to factor A.
Null and alternative hypothesis for Factor B:
Ho: There is no main effect due to factor B.
Ho: There is a main effect due to factor B.
Null and alternative hypothesis for interaction:
Ho: There is no interaction effect due to factor A and B.
Ho: There is an interaction effect due to factor A and B.
b)
N = 40
Replications, r =10
ΣX = 237
(ΣX)² =56169
ΣX² = 3781
SSA = Σ((ΣXⱼ)²/nⱼ) - (ΣX)²/N = (114²/20 + 123²/20) - 56169/40 = 2.0250
SSB = Σ((ΣXᵢ)²/nᵢ) - (ΣX)²/N = (183²/20 + 54²/20) - 56169/40 = 416.0250
SSBN = Σ((ΣX)²/n) - (ΣX)²/N = 460.0750
SSAxB = SSBN - SSA - SSB = 42.0250
SSW = SST - SSA - SSB - SSAxB = 1916.7000
SST = ΣX² - (ΣX)²/N = 3781 - 56169/40 = 2376.7750
dfA = a - 1 = 1
dfB = b-1 = 1
dfAxB = (a-1)*(b-1) = 1
dfW = ab(r-1) = 36
dfT = N-1 = 39
MSA = SSA/dfA = 2.025/1 = 2.0250
MSB = SSB/dfB = 416.025/1 = 416.0250
MSAxB = SSAxB/dfAxB = 42.025/1 = 42.0250
MSW = SSW/dfW = 1916.7/36 = 53.2417
F for Factor A = MSA/MSW = 0.0380
p-value for Factor A = F.DIST.RT(0.038, 1, 36) = 0.8465
Critical value for Factor A = F.INV.RT(0.05, 1, 36) = 4.1132
F for Factor B = MSB/MSW = 7.8139
p-value for Factor B = F.DIST.RT(7.8139, 1, 36) = 0.0083
Critical value for Factor B = F.INV.RT(0.05, 1, 36) = 4.1132
F for interaction = MSAxB/MSW = 0.7893
p-value for Interaction = F.DIST.RT(0.7893, 1, 36) = 0.3802
Critical value for Interaction = F.INV.RT(0.05, 1, 36) = 4.1132
ANOVA | ||||||
Source of Variation | SS | df | MS | F | P-value | F crit |
Between Treatment | 460.0750 | 3 | ||||
Factor A | 2.0250 | 1 | 2.0250 | 0.0380 | 0.8465 | 4.1132 |
Factor B | 416.0250 | 1 | 416.0250 | 7.8139 | 0.0083 | 4.1132 |
Interaction | 42.0250 | 1 | 42.0250 | 0.7893 | 0.3802 | 4.1132 |
Within | 1916.7000 | 36 | 53.2417 | |||
Total | 2376.7750 | 39 |
The critical F value for factor A is 4.11. Therefore, the main effect due to factor A is insignifcant because calculated value of F = 0.04 < Fc = 4.11.
The critical F value for factor B is 4.11. Therefore, the main effect due to factor B is significant because calculated value of F = 7.81 > Fc = 4.11.
The critical F value for interaction of factor A and B is 4.11. Therefore, the effect due to interaction of factor A and B is insignifcant because calculated value of F = 0.79 < Fc = 4.11.
c) η² for factor A:
η²A = N/A
η² for factor B:
η²B = SSB /(SST - SSA - SSAxB) = 416.025/(2376.775 - 2.025 - 42.025) = 0.1783 = 17.83%
η² for Interaction:
η²AxB = N/A