Question

In: Advanced Math

Suppose that W1 and W2 are subspaces of V and dimW1<dimW2. Prove that there is a...

Suppose that W1 and W2 are subspaces of V and dimW1<dimW2. Prove that there is a nonzero vector in W2 which is orthogonal to all vectors in W1.

Solutions

Expert Solution

Here I provide two proof. The first proof is little in size and as it uses inequality so this proof is valid only when V is finite dimensional wheather the second proof is general, for both finite and infinite dimension.


Related Solutions

2) Consider the cost function: C(w1,w2,q)=min{w1,w2}q Derive the production function and the conditional demand functions of...
2) Consider the cost function: C(w1,w2,q)=min{w1,w2}q Derive the production function and the conditional demand functions of the factors of production. 3) A monopolist firm operates in a market where the inverse demand function is given by P (Q) = 24-2Q. The average unit cost of production of the firm is 2. Calculate The price-quantity pair which maximizes the profit of the monopolist and calculate the elasticity of the demand, the profit of the firm and the dry loss of well-being....
Formula for Problem W1 in year 1; W2 in year 2 only to those retained W1...
Formula for Problem W1 in year 1; W2 in year 2 only to those retained W1 < W2 • Value of E-types applying = W1 + q•W2 + (1–q)•WE • Alternative for E-types = 2•WE • Value of D-types applying = W1 + (1-q)•W2 + q•WD • Alternative for D-types = 2•WD 1. Lorne Roberts Corp. has invested a lot of money in their employee screening process over the last few years for computer technicians. This company can assess whether...
Let W be a subspace of R^n and suppose that v1,v2,w1,w2,w3 are vectors in W. Suppose...
Let W be a subspace of R^n and suppose that v1,v2,w1,w2,w3 are vectors in W. Suppose that v1; v2 are linearly independent and that w1;w2;w3 span W. (a) If dimW = 3 prove that there is a vector in W that is not equal to a linear combination of v1 and v2. (b) If w3 is a linear combination of w1 and w2 prove that w1 and w2 span W. (c) If w3 is a linear combination of w1 and...
Let V be a vector space, and suppose that U and W are both subspaces of...
Let V be a vector space, and suppose that U and W are both subspaces of V. Show that U ∩W := {v | v ∈ U and v ∈ W} is a subspace of V.
Let W be a subspace of Rn with an orthogonal basis {w1, w2, ..., wp} and...
Let W be a subspace of Rn with an orthogonal basis {w1, w2, ..., wp} and let {v1,v2,...,vq} be an orthogonal basis for W⊥. Let S = {w1, w2, ..., wp, v1, v2, ..., vq}. (a) Explain why S is an orthogonal set. (b) Explain why S spans Rn. (c) Showthatdim(W)+dim(W⊥)=n.
W1, W2 and X are given at the bottom. Design a square column footing for a...
W1, W2 and X are given at the bottom. Design a square column footing for a 18-in. square tied interior column that supports loads of DL (W1) k and Live load LL (W2) k. The column is reinforced with eight No 8 bars, the bottom of the footing is 5 foot below final grade, and the soil weighs 100 lb /ft3 the allowable soil pressure is w ksf. The concrete strength is 4,000 psi and the steel is Grade 60....
A firm’s production function be given by y = x1 + x2 with w1 and w2...
A firm’s production function be given by y = x1 + x2 with w1 and w2 being the price of inputs 1 and 2 respectively. (a) Derive the conditional factor demands. (b) Suppose w1 = 2 and w2 = 1. Find the long-run cost function for this firm. Derive and graph the firm’s long-run supply curve. (c) Suppose the price of x2, w2, increases to $2 per unit. What is the long-run cost curve? Derive and graph the new supply...
Prove or disprove that the union of two subspaces is a subspace. If it is not...
Prove or disprove that the union of two subspaces is a subspace. If it is not true, what is the smallest subspace containing the union of the two subspaces.
Let V be a vector space and let U and W be subspaces of V ....
Let V be a vector space and let U and W be subspaces of V . Show that the sum U + W = {u + w : u ∈ U and w ∈ W} is a subspace of V .
Suppose that ? and ? are subspaces of a vector space ? with ? = ?...
Suppose that ? and ? are subspaces of a vector space ? with ? = ? ⊕ ?. Suppose also that ??, … , ?? is a basis of ? amd ??, … , ?? is a basis of ?. Prove ??, … , ??, ??, … , ?? is a basis of V.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT