Question

In: Chemistry

When a metal was exposed to photons at a frequency of 4.68× 1015 s–1, electrons were...

When a metal was exposed to photons at a frequency of 4.68× 1015 s–1, electrons were emitted with a maximum kinetic energy of 5.70× 10–19 J. Calculate the work function of this metal. What is the maximum number of electrons that could be ejected from this metal by a burst of photons (at some other frequency) with a total energy of 8.81× 10–7 J?

Solutions

Expert Solution


Related Solutions

When light of frequency 4.96×1015 s-1 shines on the surface of a metal, electrons are ejected...
When light of frequency 4.96×1015 s-1 shines on the surface of a metal, electrons are ejected with a maximum kinetic energy of 3.88×10-19 J. a) Calculate the wavelength of this light. b) Find the binding energy of electrons to the metal. c) What is the longest wavelength of light that will eject electrons from this metal?
A metal whose threshold frequency is 1.67×1015 s−1 emits an electron with a velocity of 7.31×105...
A metal whose threshold frequency is 1.67×1015 s−1 emits an electron with a velocity of 7.31×105 m/s when radiation of 2.05×1015 s−1 strikes the metal. Use these data to calculate the mass of the electron. Express your answer with the appropriate units.
When light of frequency 7.17x1014 Hz shines on the surface of sodium metal, electrons are ejected...
When light of frequency 7.17x1014 Hz shines on the surface of sodium metal, electrons are ejected with a maximum kinetic energy of 1.10x10-19 J. Calculate:      (a) the wavelength of this light: Answer m b) the binding energy of electrons to sodium metal: Answer J c) the longest wavelength of light that will eject electrons: Answerm In this question please use the following values for the fundamental constants: Planck's constant h=6.626x10-34 Js Speed of light c=2.998x108m/s Give your answer to...
1)The minimum frequency of light needed to eject electrons from a metal is called the threshold...
1)The minimum frequency of light needed to eject electrons from a metal is called the threshold frequency, ν0. Find the minimum energy needed to eject electrons from a metal with a threshold frequency of 4.55 × 1014 s–1. 2)With what maximum kinetic energy will electrons be ejected when this metal is exposed to light with a wavelength of λ = 265 nm?
A). The minimum frequency of light needed to eject electrons from a metal is called the...
A). The minimum frequency of light needed to eject electrons from a metal is called the threshold frequency. Find the minimum energy needed to eject electrons from a metal with a threshold frequency of 4.90 x 10^14 s^-1. B). With what maximum kinetic energy will electrons be ejected when this metal is exposed to light with a wavelength of y= 275 nm?
What does it mean when it is said that the electrons in metal metal bonds are...
What does it mean when it is said that the electrons in metal metal bonds are delocalized?
What is the frequency of the photons emitted by hydrogen atoms when they undergo transitions from...
What is the frequency of the photons emitted by hydrogen atoms when they undergo transitions from n = 5 to n = 2? Calculate in s-1 In which region of the electromagnetic spectrum does this radiation occur?
what is the kinetic energy of the emitted electrons when cesium is exposed to uv rays...
what is the kinetic energy of the emitted electrons when cesium is exposed to uv rays of frequency of 1.2 x 10^15 hz? Express your answer in joules to three significant figures.
Find the velocity of an electron emitted by a metal whose threshold frequency is 2.24×1014 s−1...
Find the velocity of an electron emitted by a metal whose threshold frequency is 2.24×1014 s−1 when it is exposed to visible light of wavelength 4.89×10−7 m .
Find the velocity of an electron emitted by a metal whose threshold frequency is 2.46×1014 s−1...
Find the velocity of an electron emitted by a metal whose threshold frequency is 2.46×1014 s−1 when it is exposed to visible light of wavelength 4.79×10−7 m .
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT