Question

In: Chemistry

Consider the voltaic cell Ag(s)|Ag+( 0.012 M )||Fe3+( 0.058 M ),Fe2+( 0.044 M )|Pt(s) Part A...

Consider the voltaic cell Ag(s)|Ag+( 0.012 M )||Fe3+( 0.058 M ),Fe2+( 0.044 M )|Pt(s)

Part A

What is Ecell initially?

Express your answer using three decimal places.

Part B (multiple choice)

As the cell operates, will  increase, decrease, or remain constant with time?

Ecell increases
Ecell decreases

Ecell remains constant

Part C (can't see)

Part D

What will be Ecell when [Ag+] has increased to 0.022 M ?

Express your answer using three decimal places.

Part E

What will be [Ag+] when Ecell= 0.015 V ?

Express your answer using two significant figures.

Part F

What are the ion concentrations when Ecell=0?

Express your answer using two significant figures. Enter your answers numerically separated by commas.

Solutions

Expert Solution

Answer is in image

PLEASE GIVE ME A THUMBS UP.


Related Solutions

Derive a balanced equation for the reaction occurring in the cell: Fe(s)|Fe2+(aq)||Fe3+(aq),Fe2+(aq)|Pt(s) a.) If E?cell =...
Derive a balanced equation for the reaction occurring in the cell: Fe(s)|Fe2+(aq)||Fe3+(aq),Fe2+(aq)|Pt(s) a.) If E?cell = 1.21 V, calculate ?G? for the reaction. b.) If E?cell=1.21V, calculate the equilibrium constant for the reaction. c.) Use the Nernst equation to determine the potential for the cell: Fe(s)|Fe2+(aq,1.0�10-3M)||Fe3+(aq,1.0�10-3M),Fe2+(aq,0.10M)|Pt(s)
For the voltaic cell, Cr(s) │ Cr3+ (aq, 0.24 M) ││ Fe2+ (aq, (?) M) │...
For the voltaic cell, Cr(s) │ Cr3+ (aq, 0.24 M) ││ Fe2+ (aq, (?) M) │ Fe(s) , Ecell is 0.33 V. Calculate the concentration of Fe2+ (M). Reduction potential for Cr3+(aq)/Cr(s) is -0.74 V, Fe2+(aq)/Fe(s) is -0.44 V. Enter number to 2 decimal places.
1) Calculate ΔG∞ for the electrochemical cell Pb(s) | Pb2+(aq) || Fe3+(aq) | Fe2+(aq) | Pt(s)....
1) Calculate ΔG∞ for the electrochemical cell Pb(s) | Pb2+(aq) || Fe3+(aq) | Fe2+(aq) | Pt(s). A. –1.2 x 102 kJ/mol B. –1.7 x 102 kJ/mol C. 1.7 x 102 kJ/mol D. –8.7 x 101 kJ/mol E. –3.2 x 105 kJ/mol 2)Determine the equilibrium constant (Keq) at 25∞C for the reaction Cl2(g) + 2Br– (aq)    2Cl– (aq) + Br2(l). A. 1.5 x 10–10 B. 6.3 x 109 C. 1.3 x 1041 D. 8.1 x 104 E. 9.8
A voltaic cell is constructed from an Ni2+(aq)−Ni(s) half-cell and an Ag+(aq)−Ag(s) half-cell. The initial concentration...
A voltaic cell is constructed from an Ni2+(aq)−Ni(s) half-cell and an Ag+(aq)−Ag(s) half-cell. The initial concentration of Ni2+(aq) in the Ni2+−Ni half-cell is [Ni2+]= 1.80×10−2 M . The initial cell voltage is +1.12 V . Part A By using data in Table 20.1 in the textbook, calculate the standard emf of this voltaic cell. E∘ = V SubmitMy AnswersGive Up Part B Will the concentration of Ni2+(aq) increase or decrease as the cell operates? Will the concentration of increase or...
Consider a galvanic cell based in the reaction Fe2+ + Cr2O72- → Fe3+ + Cr3+ in...
Consider a galvanic cell based in the reaction Fe2+ + Cr2O72- → Fe3+ + Cr3+ in acidic solution. What is the coefficient of Fe3+in the balanced equation? Reference: Ref 18-2 ​ ​ Select one: a. 3 b. 4 c. none of these d. 6 e. 2
A voltaic cell is constructed from an Ni2+(aq)−Ni(s) half-cell and an Ag+(aq)−Ag(s) half-cell.The initial concentration of...
A voltaic cell is constructed from an Ni2+(aq)−Ni(s) half-cell and an Ag+(aq)−Ag(s) half-cell.The initial concentration of Ni2+(aq) in the Ni2+−Ni half-cell is [Ni2+]= 1.80×10−2 M . The initial cell voltage is +1.13 V . 1. By using data in Table 20.1 in the textbook, calculate the standard emf of this voltaic cell.
A student makes a voltaic cell with a Ag electrode in 1.0 M AgNO3 solution and...
A student makes a voltaic cell with a Ag electrode in 1.0 M AgNO3 solution and a Pb electrode in a 1.0 M Pb(NO3)2 solution. a. Identify the cathode and write the half reaction. b. Identify the anode and write the half reaction. c. Write the overall reaction and calculate Eocell for the voltaic cell. d. What is Ecell if the concentrations of the ions in solution are [Ag+] = 0.045 M and [Pb2+] = 0.36 M? Temperature = 298.15...
Consider the voltaic cell composed of a Mn/Mn2+ electrode and a Fe/Fe2+ electrode. Calculate the concentration...
Consider the voltaic cell composed of a Mn/Mn2+ electrode and a Fe/Fe2+ electrode. Calculate the concentration of Fe2+ if the concentration of Mn2+ is 0.010 M and Ecell is 0.78V.
Consider the following standard reduction potentials, For the voltaic cell reaction below, calculate the Fe2+ concentration...
Consider the following standard reduction potentials, For the voltaic cell reaction below, calculate the Fe2+ concentration that would be needed to produce a cell potential equal to 0.16 V at 25 oC when the pH of the solution is 13.00, [Fe3+] = 0.50 M and [H2O2] = 0.35 M. Half Reaction Eo (V) Fe3+(aq) + e‒ → Fe2+(aq) 0.77 H2O2(aq) + 2 e‒ → 2 OH‒(aq) 0.88 2 Fe2+(aq) + H2O2(aq) → 2 Fe3+(aq) + 2 OH‒(aq)
A voltaic cell consists of two Ag/Ag+half-cells, A and B. The electrolyte in A is 0.10...
A voltaic cell consists of two Ag/Ag+half-cells, A and B. The electrolyte in A is 0.10 M AgNO3. Theelectrolyte in B is 0.90 M AgNO3. Which half-cell houses the cathode? What is the voltage of the cell?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT