Question

In: Advanced Math

For the matrix A, find (if possible) a nonsingular matrix P such that P−1AP is diagonal....

For the matrix A, find (if possible) a nonsingular matrix P such that P−1AP is diagonal. (If not possible, enter IMPOSSIBLE.) A = 2 −2 3 0 3 −2 0 −1 2 P = Verify that P−1AP is a diagonal matrix with the eigenvalues on the main diagonal. P−1AP =

Solutions

Expert Solution


Related Solutions

(2) A matrix A is given. Find, if possible, an invertible matrix P and a diagonal...
(2) A matrix A is given. Find, if possible, an invertible matrix P and a diagonal matrix D such that P −1AP = D. Otherwise, explain why A is not diagonalizable. (a) A =   −3 0 −5                 0 2 0                 2 0 3 (b) A =   2 0 −1              1 3 −1              2 0 5 (c) A = 1 −1 2              −1 1 2               2 2 2
Diagonalize the matrix (That is, find a diagonal matrix D and an invertible matrix P such...
Diagonalize the matrix (That is, find a diagonal matrix D and an invertible matrix P such that A=PDP−1. (Do not find the inverse of P). Describe all eigenspaces of A and state the geometric and algebraic multiplicity of each eigenvalue. A= -1 3 0 -4 6 0 0 0 1
P.0.2 Show that (a) the diagonal entries of a Hermitian matrix are real; (b) the diagonal...
P.0.2 Show that (a) the diagonal entries of a Hermitian matrix are real; (b) the diagonal entries of a skew-Hermitian matrix purely imaginary; c) the diagonal entries of a skew-symmetric matrix are zero. P.0.5 Let A ∈ Mn be invertible. Use mathematical induction to prove that (A-1)k = (Ak)-1 for all integers k. P.0.25 Let A ∈ Mn be idempotent. Show that A is invertible if and only if A = I P.0.26 Let A,B ∈ Mn be idempotent. Show...
Consider an orthogonal matrix Q ∈ R ^m×m and a diagonal matrix with non-zero diagonal elements...
Consider an orthogonal matrix Q ∈ R ^m×m and a diagonal matrix with non-zero diagonal elements D ∈ R^ m×m and answer the True— False questions below. (k) Any vector x ∈ R^m can be written as a linear combination of the columns of D (l) The columns of Q span R^m (m) The columns of D span R^m (n) The columns of Q are a basis for R^m (o) The columns of D are a basis for R^m
Orthogonally diagonalize the matrix by finding an orthogonal matrix Q and a diagonal matrix D such...
Orthogonally diagonalize the matrix by finding an orthogonal matrix Q and a diagonal matrix D such that QTAQ = D. (Enter each matrix in the form [[row 1], [row 2], ...], where each row is a comma-separated list.) A = 5 0 0 0 1 3 0 3 1 (D, Q) = $$ Incorrect: Your answer is incorrect. Submission 2(0/1 points)Monday, November 25, 2019 10:01 PM CST Orthogonally diagonalize the matrix by finding an orthogonal matrix Q and a diagonal...
Find the matrix P that diagonalizes A, and check your work by computer P^-1AP. This matrix...
Find the matrix P that diagonalizes A, and check your work by computer P^-1AP. This matrix is [-14 12] [-20 17] I've tried this problem, and I keep getting the eigenvalues of λ=1, 2 and the eigenspace [4 5] for λ=1, and eigenspace [3 4] for λ=2. However, whenever I check it with P^-1AP, it doesn't produce a diagonal matrix.
Find an orthogonal matrix P that diagonalizes the following matrix A: A is 3 by 3...
Find an orthogonal matrix P that diagonalizes the following matrix A: A is 3 by 3 matrix: (3 1 0 1 -1 1 0 0 2)
Find a matrix P that diagonalizes the matrix A = [ 2 0 ?2 / 0...
Find a matrix P that diagonalizes the matrix A = [ 2 0 ?2 / 0 3 0 / 0 0 3 ] and compute P ?1AP.
Give an example of a square matrix A such that all the diagonal entries are positive...
Give an example of a square matrix A such that all the diagonal entries are positive but A is not positive definite
What are the eigenvalues and eigenvectors of a diagonal matrix? Justify your answer (explain) These questions...
What are the eigenvalues and eigenvectors of a diagonal matrix? Justify your answer (explain) These questions follow the exercises in Chapter 4 of the book, Scientic Computing: An Introduction, by Michael Heath. They study some of the properties of eigenvalues, eigenvectors, and some ways to compute them.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT