Question

In: Advanced Math

1. Let a < b. (a) Show that R[a, b] is uncountable

1. Let a < b. (a) Show that R[a, b] is uncountable

Solutions

Expert Solution


Related Solutions

Let R=R+. Define: a+b = ab ; a*b = a^(lnb) 1. Is (R+, +, *) a...
Let R=R+. Define: a+b = ab ; a*b = a^(lnb) 1. Is (R+, +, *) a ring? 2. If so is it commutative? 3. Does it have an identity?
Let f : [a, b] → R be a monotone function. Show that the discontinuity set...
Let f : [a, b] → R be a monotone function. Show that the discontinuity set Disc(f) is countable.
Let L be the set of all languages over alphabet {0}. Show that L is uncountable,...
Let L be the set of all languages over alphabet {0}. Show that L is uncountable, using a proof by diagonalization.
5. (a) Prove that the set of all real numbers R is uncountable. (b) What is...
5. (a) Prove that the set of all real numbers R is uncountable. (b) What is the length of the Cantor set? Verify your answer.
Let A and B be two non empty bounded subsets of R: 1) Let A +B...
Let A and B be two non empty bounded subsets of R: 1) Let A +B = { x+y/ x ∈ A and y ∈ B} show that sup(A+B)= sup A + sup B 2) For c ≥ 0, let cA= { cx /x ∈ A} show that sup cA = c sup A hint:( show c supA is a U.B for cA and show if l < csupA then l is not U.B)
Let R be the relation on Q defined by a/b R c/d iff ad=bc. Show that...
Let R be the relation on Q defined by a/b R c/d iff ad=bc. Show that R is an equivalence relation. Describe the elements of the equivalence class of 2/3.
5. (a) Let f : R \ {−1} → R, f(x) = x+1. Show that f...
5. (a) Let f : R \ {−1} → R, f(x) = x+1. Show that f is injective, but not surjective. (b) Suppose g : R\{−1} → R\{a} is a function such that g(x) = x−1, where a ∈ R. Determine x+1 a, show that g is bijective and determine its inverse function.
Let A = {r belongs to Q : e < r < pi} show that A...
Let A = {r belongs to Q : e < r < pi} show that A is closed and bounded but not compact
1.- Show that (R, τs) is connected. Also show that (a, b) is connected, with the...
1.- Show that (R, τs) is connected. Also show that (a, b) is connected, with the subspace topology given by τs. 2. Let f: X → Y continue. We say that f is open if it sends open of X in open of Y. Show that the canonical projection ρi: X1 × X2 → Xi (x1, x2) −→ xi It is continuous and open, for i = 1, 2, where (X1, τ1) and (X2, τ2) are two topological spaces and...
(V) Let A ⊆ R, B ⊆ R, A 6= ∅, B 6= ∅ be two...
(V) Let A ⊆ R, B ⊆ R, A 6= ∅, B 6= ∅ be two bounded subset of R. Define a set A − B := {a − b : a ∈ A and b ∈ B}. Show that sup(A − B) = sup A − inf B and inf(A − B) = inf A − sup B
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT