Question

In: Chemistry

To determine resonance energy of benzene, CDDT was combusted in a bomb calorimeter. Why is this...

To determine resonance energy of benzene, CDDT was combusted in a bomb calorimeter.

Why is this research (to determine resonance energy of benzene) relevant in chemistry, life or other scientific fields?

Solutions

Expert Solution

In Lewis formulas, electrons are paired between atoms to form covalent bonds. Each single bond is made by two valence electrons, localized between the two bonded atoms. Each double bond has two additional localized π electrons, while each triple bond has four additional π electrons (two pairs) between the bonded atoms.

In molecules or ions that have a combination of one or more single and multiple bonds, often the exact position of the respective bonds cannot be indicated by a single Lewis structure. The π electrons appear to be in an intermediate position. To solve this problem, the concept of resonance is used, and the molecule is represented by several contributing structures, each showing a possible distribution of single and multiple bonds. The actual structure has a lowered overall energy and an intermediate bond order.


Related Solutions

A 1.00 g sample of coffee beans was completely combusted in a bomb calorimeter (Ccal =...
A 1.00 g sample of coffee beans was completely combusted in a bomb calorimeter (Ccal = 62.1 J/o C) and caused the temperature of the water in the calorimeter to increase from 24.66 K to 27.22 K. What is the change in temperature of the water in degrees Celsius? The heat released by the coffee beans was: ? One cup of black coffee is made from 237 g of coffee beans. How many Calories are in one cup of black...
A 0.623 g sample of vanillin (C8H8O3, MM = 152.15) is combusted in a bomb calorimeter...
A 0.623 g sample of vanillin (C8H8O3, MM = 152.15) is combusted in a bomb calorimeter with a heat capacity of 5.89 kJ/ºC. Given that the heat of combustion of vanillin is -3.83x103 kJ/mol, what must the temperature change have been in the bomb calorimeter?
A. When a 0.235-g sample of benzoic acid is combusted in a bomb calorimeter, the temperature...
A. When a 0.235-g sample of benzoic acid is combusted in a bomb calorimeter, the temperature rises 1.644 ∘C . When a 0.275-g sample of caffeine, C8H10O2N4, is burned, the temperature rises 1.585 ∘C . Using the value 26.38 kJ/g for the heat of combustion of benzoic acid, calculate the heat of combustion per mole of caffeine at constant volume. B. Assuming that there is an uncertainty of 0.002 ∘C in each temperature reading and that the masses of samples...
41. When 0.500 g of cyclohexane, C6H12, is combusted in a bomb calorimeter that has a...
41. When 0.500 g of cyclohexane, C6H12, is combusted in a bomb calorimeter that has a water sheath containing 750.0 g of water, the temperature of the water increased by 5.5 °C. Assuming that the specific heat of water is 4.18 J/(g °C), and that the heat absorption by the calorimeter is negligible, calculate the enthalpy of combustion per mole of cyclohexane.    (A). 2.90 x 106 J/mol    (B). 4.20 x 106 J/mol    (C). 1.19 x 104 J/mol...
A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat...
A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. Since the "bomb" itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter. This is known as calibrating the calorimeter. In the laboratory a student burns a 0.466-g sample of 1,8-octanediol (C8H18O2) in a bomb calorimeter containing 1200. g of water. The temperature increases from 25.90 °C...
1.A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
1.A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.3807 g sample of 1,6-hexanediol (C6H14O2) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.139×103 g of water. During the combustion the temperature increases from 25.30 to 27.59 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter was...
A)A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat...
A)A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. Since the "bomb" itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter. This is known as calibrating the calorimeter. In the laboratory a student burns a 0.392-g sample of bisphenol A (C15H16O2) in a bomb calorimeter containing 1140. g of water. The temperature increases from 25.00...
A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat...
A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. Since the "bomb" itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter. This is known as calibrating the calorimeter. In the laboratory a student burns a 0.337-g sample of bisphenol A (C15H16O2) in a bomb calorimeter containing 1040. g of water. The temperature increases from 25.90...
0.5122 g of Napthalene (C10H8) was combusted in a constant-volume bomb calorimeter (Ccal= 5267.8 J/K), where...
0.5122 g of Napthalene (C10H8) was combusted in a constant-volume bomb calorimeter (Ccal= 5267.8 J/K), where the water temperature increased from 20.17 C to 24.08 C. Calculate the molar delta H and delta U for the combustion of Napthalene in KJ/mol at 20.17 C.
How to determine the heat of formation of sucrose after a bomb calorimeter experiment?
How to determine the heat of formation of sucrose after a bomb calorimeter experiment?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT