Question

In: Chemistry

How to determine the heat of formation of sucrose after a bomb calorimeter experiment?

How to determine the heat of formation of sucrose after a bomb calorimeter experiment?

Solutions

Expert Solution

Bomb calorimeter gives the calorific value i.e. amount of energy produced per gram, of a substance.

The bomb calorimeter can be used to determine the heat of formation of sucrose as follow-

1. Determine the calorific value of sucrose.

Using bomb calorimeter, determine the calorific value of sucrose.

Suppose, the value obtained is X kJ/ gram.

2. Determine heat of formation.

Part A: Bomb calorimeter carries out combustion of the specified substance in excess of O2. For sucrose, the reaction can be summarized as follow-

            C12H22O11 + O2 (excess) ------> 12CO2 + 11H2O   ; equation 1

The calorific value indicates that X kJ energy is released when 1 gram of sucrose is combusted to yield CO2 and H2O. So, the amount of energy needed for form sucrose from CO2 and H2O is equal to amount of energy released during its combustion- both the reactions are opposite to each other-

            12CO2 + 11H2O --------> C12H22O11 + 12O2 ; equation 2

Part B: Bomb calorimeter gives energy produced per gram of sucrose.

Calculate the amount of energy released from combustion of 1 mole of sucrose. This energy is equal to (molecular weight of sucrose x amount of energy released from combustion of 1 gram of sucrose).

Thus, a mole (180 gram) of sucrose yields 180X kJ energy.

Since, equation 1 and 2 are same but in opposite direction.

Thus, the heat of formation of sucrose = +180X kJ mol-1

  


Related Solutions

A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat...
A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. Since the "bomb" itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter. This is known as calibrating the calorimeter. In the laboratory a student burns a 0.466-g sample of 1,8-octanediol (C8H18O2) in a bomb calorimeter containing 1200. g of water. The temperature increases from 25.90 °C...
A)A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat...
A)A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. Since the "bomb" itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter. This is known as calibrating the calorimeter. In the laboratory a student burns a 0.392-g sample of bisphenol A (C15H16O2) in a bomb calorimeter containing 1140. g of water. The temperature increases from 25.00...
A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat...
A bomb calorimeter, or constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. Since the "bomb" itself can absorb energy, a separate experiment is needed to determine the heat capacity of the calorimeter. This is known as calibrating the calorimeter. In the laboratory a student burns a 0.337-g sample of bisphenol A (C15H16O2) in a bomb calorimeter containing 1040. g of water. The temperature increases from 25.90...
1.A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
1.A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.3807 g sample of 1,6-hexanediol (C6H14O2) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.139×103 g of water. During the combustion the temperature increases from 25.30 to 27.59 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter was...
Q) The combustion of 3.07 g of hydrogen in a bomb calorimeter with a heat capacity...
Q) The combustion of 3.07 g of hydrogen in a bomb calorimeter with a heat capacity of 26.24 kJ/K results in a rise in temperature from 18.43 °C to 35.02 °C. Calculate the heat of combustion (in kJ/g) of the hydrogen. Report your answer to three significant figures. Please show your work and equations. Thank you!
a 5.00 g sample of TNT (C7H5N2O6) is burned in a bomb calorimeter with a heat...
a 5.00 g sample of TNT (C7H5N2O6) is burned in a bomb calorimeter with a heat capacity of 420 J/degreeC. The calorimeter contained 610 grams od water (4.18J/gdegreeC) and the temperature of the water was measured to go from 20.0 degree C to 22.5 degree C. What is the heat of combustion of TNT?. I know the answer, but can you give me a step by step explanation of how to get it?
When a 3.125 g sample of ammonium nitrate decomposes in a bomb calorimeter with a heat...
When a 3.125 g sample of ammonium nitrate decomposes in a bomb calorimeter with a heat capacity of 4.116kJ/C the temperature rises from 24.15 degrees C to 25.35 degrees C. What is delta E for the decomposition of ammonium nitrate Nh4NO3 --> N2O + 2 H2O
In the specific heat experiment, critical factors are the heat capacity of the calorimeter, the temperature...
In the specific heat experiment, critical factors are the heat capacity of the calorimeter, the temperature of the holt sample, and the final temperature of the calorimeter. What effect could influence the temperature of the hot sample at the instant it is inserted into the calorimeter? What issues surround the measurement of the final calorimeter temperature?
A 1.800 g sample of octane, C8H18, was burned in a bomb calorimeter whose total heat...
A 1.800 g sample of octane, C8H18, was burned in a bomb calorimeter whose total heat capacity is 11.66 kJ/°C. The temperature of the calorimeter plus contents increased from 21.59°C to 29.44°C. What is the heat of combustion per gram of octane? What is the heat of combustion per mole of octane? In a bomb calorimeter (where pressure is NOT constant) what is the heat of reaction equal to?
To determine resonance energy of benzene, CDDT was combusted in a bomb calorimeter. Why is this...
To determine resonance energy of benzene, CDDT was combusted in a bomb calorimeter. Why is this research (to determine resonance energy of benzene) relevant in chemistry, life or other scientific fields?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT