Question

In: Physics

A 1.8-cm-tall object is 3.1 cm to the left of a diverging lens with a focal...

A 1.8-cm-tall object is 3.1 cm to the left of a diverging lens with a focal length of -3.1 cm. A converging lens with a focal length of 4.6 cm is distance d to the right of the first lens. a) For what value of d is the image at infinity? b) What is the angular size of the image as seen by looking through the converging lens? ?c) What is the angular magnification of this two-lens magnifier?

Solutions

Expert Solution

Using lense formula

So image distance for the first lens is -1.55 cm

Object distance for conversing lens will be

using lens formula

So the distance between two lens is 3.05 cm

------------------ Solution for part (b) ----------------------------------

Magnification by first lens is

cm

angular magnification of conversing lence is

So angular size of the image seen by looking through the converging lens is 4.9 cm

--------------------- Solution of Part c ----------------------------------

Angular magnification of this two-lens magnifier is

So angular magnification of the two lens magnifier is 2.72


Related Solutions

1.20cm tall object is 50.0cm to the left of a diverging lens (lens 1) of focal...
1.20cm tall object is 50.0cm to the left of a diverging lens (lens 1) of focal length of magnitude 40.0cm. A second converging lens (lens 2) of focal length 60.0cm, is located 300cm to the right of the first lens along the same optic axis. (a)Calculate the location of the image (call it I1) formed by the lens1. (b) Is image I1 real or virtual? (c) Is image I1 on left side or right side of lens 1? (d) Calculate...
A 1.4-cm-tall object is located 3.0cm to the left of a converging lens with a focal...
A 1.4-cm-tall object is located 3.0cm to the left of a converging lens with a focal length of 4.0cm . A diverging lens, of focal length -7.4cm, is 14cm to the right of the first lens. Find the position of the final image. s2` = -5.7 cm Find the size of the final image. h2` = ? Find the orientation of the final image. a) real, upright b) real, inverted c) virtual, upright d) virtual, inverted
An object is placed 12 cm in front of a diverging lens with a focal length...
An object is placed 12 cm in front of a diverging lens with a focal length of 7.9 cm. (a) Find the image distance and determine whether the image is real or virtual. (b) Find the magnification
An object is 15.2 cm to the left of a lens with a focal length of...
An object is 15.2 cm to the left of a lens with a focal length of 10.2 cm. A second lens of focal length 11.8 cm is 39.27 cm to the right of the first lens. The height of the object of is 2.1 cm. What is the location of the final image with respect to the second lens? What is the height of the image?
A 6·cm tall candle is placed 200·cm from a diverging lens with a focal length of...
A 6·cm tall candle is placed 200·cm from a diverging lens with a focal length of 50·cm. Note: enter the absolute value of your answers for all distances and heights ... use the signs to determine the type and orientation of the images. (a) How far from the lens will the image be? cm. (b) How tall will the image be? Now, imagine that the candle is moved closer, so that it is only 20·cm from the lens. (d) How...
Problem 1) A 5 cm tall object is 20 cm in front of a diverging lens...
Problem 1) A 5 cm tall object is 20 cm in front of a diverging lens with a focal length of 10 cm. a) What is the location of the image? -6.67cm b) What is the height of the image? -1.67 cm c) The image is:virtual d) The image is:upright At 15 cm to the right of the lens in problem 1 we add a converging lens with a focal length of 10 cm. a) What is the location of...
An object is placed 22.7 cm to the left of a diverging lens (f = -13.0...
An object is placed 22.7 cm to the left of a diverging lens (f = -13.0 cm). A concave mirror (f = 9.99 cm) is placed 29.9 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?
An object is placed 27.2 cm to the left of a diverging lens (f = -10.6...
An object is placed 27.2 cm to the left of a diverging lens (f = -10.6 cm). A concave mirror (f = 17.1 cm) is placed 40.3 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?
A diverging lens of focal length 15 cm forms an image of object placed at 30...
A diverging lens of focal length 15 cm forms an image of object placed at 30 cm from the lens. The magnification of the lens is:
An object is placed 49 cm to the left of a converging lens of focal length...
An object is placed 49 cm to the left of a converging lens of focal length 21 cm. A diverging lens of focal length − 29 cm is located 10.3 cm to the right of the first lens. (Consider the lenses as thin lenses). a) Where is the final image with respect to the second lens? b)What is the linear magnification of the final image?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT