Question

In: Statistics and Probability

Bone mineral density and cola consumption has been recorded for a sample of patients. Let xx...

Bone mineral density and cola consumption has been recorded for a sample of patients. Let xx represent the number of colas consumed per week and yy the bone mineral density in grams per cubic centimeter. Based on the data shown below answer the questions rounding your final answers to four decimal places.

(a) Create a scatter plot with linear regression line for the data. (2 points)

y =  x +

(b) Interpret the slope of the regression equation in a complete sentence. (2 points)



(c) Use the linear correlation coefficient to determine if there is correlation. (5 points)

r =

Is there correlation at the 0.05 level of significance? (2 points)

  • no
  • yes



(d) According to the linear regression equation, the bone density of someone who drinks 23 colas per week is . (2 points)

Submit a file with your scatter plot below. (5 points)

Choose File No file chosen

x y
2 1.0259
3 1.02021
4 1.01252
5 1.01683
6 1.00814
7 0.99845
8 1.00076
9 1.00607
10 1.00238
11 0.99469
12 1

Solutions

Expert Solution

Given,

Bone mineral density and cola consumption has been recorded for a sample of patients.

x: represent the number of colas consumed per week

y: The bone mineral density in grams per cubic centimetre.

The regression output summary for given data is as below

SUMMARY OUTPUT

­­

Regression Statistics

Multiple R

0.882578

R Square

0.778944

Adjusted R Square

0.754383

Standard Error

0.004925

Observations

11

ANOVA

df

SS

MS

F

Significance F

Regression

1

0.000769

0.000769

31.71373

0.000321

Residual

9

0.000218

2.43E-05

Total

10

0.000988

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Lower 95.0%

Upper 95.0%

Intercept

1.026325

0.003607

284.5324

4.16E-19

1.018166

1.034485

1.018166

1.034485

x

-0.00264

0.00047

-5.63149

0.000321

-0.00371

-0.00158

-0.00371

-0.00158

(a) Create a scatter plot with linear regression line for the data.

--> Below is the scatter plot with the line of best fit/regression line

y = 1.026325 - 0.00264 * X

(b) Interpret the slope of the regression equation in a complete sentence. (2 points)

---> Interpretation of slope – If consumption of number of colas consumed per week is increased by 1, then bone mineral density changes by - 0.00264 amount.

(c) Use the linear correlation coefficient to determine if there is correlation. (5 points)

Linear correlation coefficient: r = -0.882578249

Is there correlation at the 0.05 level of significance?

----> The sample size is n = 11

The number of degrees of freedom is df = n-2 = 11 - 2 = 9

The corresponding critical correlation value rc for a significance level of α=0.05

rc=0.602

|r| > rc = 0.602 > rc hence the correlation coefficient is significant.

Answer --> yes

(d) According to the linear regression equation, the bone density of someone who drinks 23 colas per week is .

Given, X =23 and Since, y = 1.026325 - 0.00264 * X

y = 1.026325 - 0.00264 * 23 = 0.965605

at x=23 y = 0.965605


Related Solutions

Bone mineral density and cola consumption has been recorded for a sample of patients. Let x...
Bone mineral density and cola consumption has been recorded for a sample of patients. Let x represent the number of colas consumed per week and y the bone mineral density in grams per cubic centimeter. Based on the data shown below answer the questions rounding your final answers to four decimal places. (a) Create a scatter plot with linear regression line for the data. (2 points) y = -.0028 x + .9264 (b) Interpret the slope of the regression equation...
Bone mineral density and cola consumption has been recorded for a sample of patients. Let x...
Bone mineral density and cola consumption has been recorded for a sample of patients. Let x represent the number of colas consumed per week and y the bone mineral density in grams per cubic centimeter. Assume the data is normally distributed. Cola Consumed Bone Mineral Density (g) 1 0.8777 2 0.8925 3 0.8898 4 0.8769 5 0.8999 6 0.8634 7 0.8762 8 0.8888 9 0.8552 10 0.8546 11 0.8762 Using that data, find the estimated regression equation which can be...
1. Bone Density Test A bone mineral density test is used to identify a bone disease....
1. Bone Density Test A bone mineral density test is used to identify a bone disease. The result of a bone density test is commonly measured as a z score, and the population of z scores is normally distributed with a mean of 0 and a standard deviation of 1. a. For a randomly selected subject, find the probability of a bone density test score less than 1.54. b. For a randomly selected subject, find the probability of a bone...
Osteoporosis is an age-related condition characterized by loss of bone mineral density (BMD) and is a...
Osteoporosis is an age-related condition characterized by loss of bone mineral density (BMD) and is a risk factor for fractures in older women. A research project on women looking at fracture rates and bone mineral density showed that women with the lowest bone mineral density were associated with a higher fracture rate than those with higher bone mineral densities. Women targeted with bone mineral density rates of less than 2.5 standard deviations (SD) were evaluated and this was found to...
it has been noted that in some ballet dancers that the bone density is greatly reduced...
it has been noted that in some ballet dancers that the bone density is greatly reduced compared to that which is seen in average population. suggest reasons for this with an explanation of how bones are affected by diet, hormones and excercise.
A. Researchers examined the relationship between cola consumption and bone loss after fifty. One thousand women...
A. Researchers examined the relationship between cola consumption and bone loss after fifty. One thousand women were randomly sampled, everyone's cola consumption was recorded over a two month period of time, and bone density measures were also recorded. Researchers found that the more cola consumed, the lower the level of bone density. They concluded that cola consumption leads to loss of bone density. What type of study is this research and why? Identify the variables. Evaluation the internal validity. B....
Researchers examined the relationship between cola consumption and bone loss after fifty. One thousand women were...
Researchers examined the relationship between cola consumption and bone loss after fifty. One thousand women were randomly sampled, everyone's cola consumption was recorded over a two month period of time, and bone density measures were also recorded. Researchers found that the more cola consumed, the lower the level of bone density. They concluded that cola consumption leads to loss of bone density. What type of study is this research and why? Identify the variables. Evaluation the internal validity. Researchers examined...
Colas per week Bone Mineral Density (grams per cubic centimeter) 0 0.907 0 0.896 1 0.881...
Colas per week Bone Mineral Density (grams per cubic centimeter) 0 0.907 0 0.896 1 0.881 1 0.870 2 0.853 2 0.835 2 0.836 3 0.816 4 0.789 5 0.767 5 0.762 6 0.733 7 0.704 7 0.714 7 0.710 The​ least-squares regression line treating cola consumption per week as the explanatory variable... A) Y with caret = ___x + (___) B) Interpert the slope ___ C) Interpret the​ y-intercept? D) Predict the bone mineral density of the femoral neck...
Annual high temperatures in a certain location have been tracked for several years. Let XX represent...
Annual high temperatures in a certain location have been tracked for several years. Let XX represent the year and YY the high temperature. Based on the data shown below, calculate the correlation coefficient (to three decimal places) between XX and YY. Use your calculator! x y 1 20.7 2 19.6 3 21.9 4 24.1 5 24.2 6 26.8 7 24.1 8 28.2 9 27.2 10 30.5 r=______
2. Annual high temperatures in a certain location have been tracked for several years. Let XX...
2. Annual high temperatures in a certain location have been tracked for several years. Let XX represent the year and YY the high temperature. Based on the data shown below, calculate the regression line (each value to two decimal places). Y = ____ x + _____ x y 3 12.12 4 17.26 5 16.3 6 21.04 7 20.98 8 24.52 4. Annual high temperatures in a certain location have been tracked for several years. Let XX represent the year and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT