Question

In: Physics

A diverging lens of focal length 15 cm forms an image of object placed at 30...

A diverging lens of focal length 15 cm forms an image of object placed at 30 cm from the lens.

The magnification of the lens is:

Solutions

Expert Solution

we have,

focal length of diverging ( Concave ) lens

distance of object from the lens

As per the thin lens equation the relation between , and the distnace    of the image from the lens will be given as,

Using and in above relation we get,

sign indicates that the image is formed on the same side as that the object,

So, the magnification   of diverging lense will be given as,

using   and   we get the magnification of lense as,


Related Solutions

An object is placed 12 cm in front of a diverging lens with a focal length...
An object is placed 12 cm in front of a diverging lens with a focal length of 7.9 cm. (a) Find the image distance and determine whether the image is real or virtual. (b) Find the magnification
A converging lens has a focal length of 15 cm. If an object is placed at...
A converging lens has a focal length of 15 cm. If an object is placed at a distance of 5 cm from the lens, a. find the image position d i = _____ cm (include sign +/-) b. find the magnification M = _____(include sign +/-) c. characterize the resulting image. ________(real or virtual) ________(enlarged or reduced) ________(upright or inverted)
A diverging lens of focal length -12.5 cm is placed 40.0 cm from a converging lens...
A diverging lens of focal length -12.5 cm is placed 40.0 cm from a converging lens of unknown focal length.  A 15.2 cm tall erect object is placed 25.3 cm in front of the diverging lens which is to produce an image on a screen that is twice the size of the original object but inverted. A) Where should the screen be located to produce a clear image? Give the distance from the converging lens to the screen in cm. B)...
For a diverging lens of focal length -20cm, for what object distance will the magnification of the image be 0.8?
For a diverging lens of focal length -20cm, for what object distance will the magnification of the image be 0.8?Group of answer choices10cm.8cm.5cm.4cm.2cm.
A 6·cm tall candle is placed 200·cm from a diverging lens with a focal length of...
A 6·cm tall candle is placed 200·cm from a diverging lens with a focal length of 50·cm. Note: enter the absolute value of your answers for all distances and heights ... use the signs to determine the type and orientation of the images. (a) How far from the lens will the image be? cm. (b) How tall will the image be? Now, imagine that the candle is moved closer, so that it is only 20·cm from the lens. (d) How...
a) The focal length of a converging lens is 35 cm. An object is placed 100...
a) The focal length of a converging lens is 35 cm. An object is placed 100 cm in front of the lens. Describe the image. b) The focal length of a converging lens is 35 cm. An object is placed 30 cm in front of the lens. Describe the image. c) The focal length of a diverging lens is 35 cm. An object is placed 100 cm in front of the lens. Describe the image. d) The focal length of...
An object is placed 49 cm to the left of a converging lens of focal length...
An object is placed 49 cm to the left of a converging lens of focal length 21 cm. A diverging lens of focal length − 29 cm is located 10.3 cm to the right of the first lens. (Consider the lenses as thin lenses). a) Where is the final image with respect to the second lens? b)What is the linear magnification of the final image?
An object is placed 35.5 cm to the left of a converging lens of focal length...
An object is placed 35.5 cm to the left of a converging lens of focal length 18.8 cm. A second lens, which is diverging and has a focal length of -88.8 cm is placed at a certain distance d to the right of the first lens. A) where is the image of the object formed by the first lens and what is its magnification? B) If the distance d=53.6 cm, where is the final image of the object? What are...
A 1.0-cm-tall object is 100 cm from a screen. A diverging lens with focal length -20...
A 1.0-cm-tall object is 100 cm from a screen. A diverging lens with focal length -20 cm is 20 cm in front of the object. a. What is the focal length of a second lens that will produce a well-focused, 2.0-cm-tall image on the screen? b. What is the distance from the screen of the second lens?
1. An object is 30 cm in front of a converging lens with a focal length...
1. An object is 30 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image. Is the image upright or inverted? Is it real or virtual? 2. An object is 6.0 cm in front of a converging lens with a focal length of 10 cm. Use ray tracing to determine the location of the image. Is the image upright or inverted? Is it real or virtual?...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT