Question

In: Statistics and Probability

The data of the samples taken from two piles are as follows. Yığın-1 Yığın-2 Sample Volume...

The data of the samples taken from two piles are as follows.

Yığın-1

Yığın-2

Sample Volume

12

9

Sample Average

34,56

41,73

Sample Variance

4,02

3,21

5% significance level,
a) Is there evidence that the 2nd stack variance is less than 3.1?
b) Is there evidence that the two stack variances are not equal?
c) Is there evidence that the average of the first stack is smaller than the average of the second stack? What is the p-value?

Solutions

Expert Solution

a). It is given that for second stack, we have

Testing for evidence that the nd stack variance is less than 3.1.

Level of significance:

Test statistic:

Critical region :

Now

Decision: Since the calculated value of does not fall in region of rejection, we fail to reject the null hypothesis.

Hence we conclude that there is not enough evidence to claim that the population variance is less than 3.1, at the .05 significance level.

b). Is there evidence that the two stack variances are not equal?

Level of significance:

Test Statistic:

Critical region     

Since the calculated value of F doesn't fall in the region of rejection, we fail to reject the null hypothesis.

Hence we conclude that there is not enough evidence that the two stack variances are not equal.

c) Is there evidence that the average of the first stack is smaller than the average of the second stack? What is the p-value?

Level of significance:

Test statistic: we shall be using a two sample independent t-test for testing in this case.

where is the pooled variance

The critical region is  

Since the calculated value of t falls in the rejection region, we reject the null hypothesis. Hence, we conclude that there is enough evidence to claim that population mean of first stack ​ is less than the second stack at the .05 significance level.

The p-value is 0.0000.


Related Solutions

The following results are for independent random samples taken from two populations. Sample 1 Sample 2...
The following results are for independent random samples taken from two populations. Sample 1 Sample 2 n1 = 20 n2 = 30 x1 = 22.8 x2 = 20.1 s1 = 2.3 s2 = 4.8 (a) What is the point estimate of the difference between the two population means? (Use x1 − x2.) (b) What is the degrees of freedom for the t distribution? (Round your answer down to the nearest integer.) (c) At 95% confidence, what is the margin of...
1. Consider the following results for independent samples taken from two populations. Sample 1 Sample 2...
1. Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1 = 500 n2= 200 p1= 0.45 p2= 0.34 a. What is the point estimate of the difference between the two population proportions (to 2 decimals)? b. Develop a 90% confidence interval for the difference between the two population proportions (to 4 decimals). Use z-table. to c. Develop a 95% confidence interval for the difference between the two population proportions (to 4 decimals). Use...
Consider the following data for two independent random samples taken from two normal populations. Sample 1...
Consider the following data for two independent random samples taken from two normal populations. Sample 1 11 6 13 7 9 8 Sample 2 8 7 9 4 5 9 (a) Compute the two sample means. Sample 1Sample 2 (b) Compute the two sample standard deviations. (Round your answers to two decimal places.) Sample 1Sample 2 (c) What is the point estimate of the difference between the two population means? (Use Sample 1 − Sample 2.) (d) What is the...
Consider the following results for independent random samples taken from two populations.   Sample 1 Sample 2...
Consider the following results for independent random samples taken from two populations.   Sample 1 Sample 2 n1= 10 n2 =  40 x1= 22.3 x2= 20.3 s1= 2.5 s2 = 4.1 a. What is the point estimate of the difference between the two population means (to 1 decimal)?      b. What is the degrees of freedom for the  t distribution (round down)?      c. At 95% confidence, what is the margin of error (to 1 decimal)?      d. What is the 95% confidence...
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1...
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1 = 400 n2= 300 p1= 0.49 p2= 0.38 Develop a 90% confidence interval for the difference between the two population proportions (to 4 decimals). Use z-table. ___ to ___ c. Develop a 95% confidence interval for the difference between the two population proportions (to 4 decimals). Use z-table. ___ to ___
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1...
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1 = 500 n2= 200 p1= 0.42 p2= 0.31 a. What is the point estimate of the difference between the two population proportions (to 2 decimals)? b. Develop a 90% confidence interval for the difference between the two population proportions (to 4 decimals). Use z-table. to c. Develop a 95% confidence interval for the difference between the two population proportions (to 4 decimals). Use z-table....
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1...
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1 = 500 n2= 300 p1= 0.49 p2= 0.34 a. What is the point estimate of the difference between the two population proportions (to 2 decimals)? b. Develop a 90% confidence interval for the difference between the two population proportions (to 4 decimals). to c. Develop a 95% confidence interval for the difference between the two population proportions (to 4 decimals).
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1...
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1 = 500 n2 = 200 p1 = 0.44 p2 = 0.31 a. What is the point estimate of the difference between the two population proportions (to 2 decimals)?   b. Develop a 90% confidence interval for the difference between the two population proportions (to 4 decimals).     to    c. Develop a 95% confidence interval for the difference between the two population proportions (to 4 decimals).     to   
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1...
Consider the following results for independent samples taken from two populations. Sample 1 Sample 2 n1 = 400 n2 = 300 p1 = 0.54 p2 = 0.38 (a) What is the point estimate of the difference between the two population proportions? (b) Develop a 90% confidence interval for the difference between the two population proportions. (c) Develop a 95% confidence interval for the difference between the two population proportions.
Consider the following results for two independent random samples taken from two populations. Sample 1 Sample...
Consider the following results for two independent random samples taken from two populations. Sample 1 Sample 2 n1 = 50 n2 = 30 x1 = 13.4 x2 = 11.7 σ1 = 2.3 σ2 = 3 What is the point estimate of the difference between the two population means? Provide a 90% confidence interval for the difference between the two population means (to 2 decimals). ( , ) Provide a 95% confidence interval for the difference between the two population means...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT