Question

In: Physics

A 100 g ball collides elastically with a 300 g ball that is at rest. If...

A 100 g ball collides elastically with a 300 g ball that is at rest. If the 100 g ball was traveling in the positive x-direction at 5 m/s before the collision, what are the velocities of the two balls after the collision?

Solutions

Expert Solution

Mass of the two balls is

,

Initial velocity of 100g ball is v1i=5m/s

Initial velocity of 300g ball is v2i=0

Let v1f and v2f be the velocities of the two balls after the collision.

Using conservation of momentum before and after the collision

In elastic collision, the kinetic energy of the two balls system is conserved

Using equation (1)

There are two roots to this equation,

i. , which is the same velocity of 300g ball before the collision (v2i=0)

ii.

Using (1)


Related Solutions

A ball (Ball A) moving at 10.0 m/s overtakes and collides elastically with an identical ball...
A ball (Ball A) moving at 10.0 m/s overtakes and collides elastically with an identical ball (Ball B) moving at 4.00 m/s in the same direction. 1) Find the speed of Ball A after the collision. 2) Find the speed of Ball B after the collision.
A 100 g lead ball at a temperature of 100◦C is immersed in 300 g of...
A 100 g lead ball at a temperature of 100◦C is immersed in 300 g of water with the temperature 20◦C contained in an insulated boiler whose heat capacity can be neglected. What will be the mixing temperature? What entropy change does the ball produce? What entropy change does the water bring?What will be the total entropy change? A 0.10 kg heavy steel ball with a temperature of 200◦C is thrown into a lake with temperatures 20◦C. Which is the...
A proton collides elastically with another proton that is initially at rest. The incoming proton has...
A proton collides elastically with another proton that is initially at rest. The incoming proton has an initial speed of 4.00e5 m/s. The incoming proton has an initial speed of 4.00e5 m/s and makes a glancing collision with the second proton (at close separations, the protons exert a repulsive electrostatic force on each other). After the collision, one proton moves off at an angle of 30.0 degrees to the original direction of motion and the second deflects at an angle...
Suppose that a bowling ball collides elastically with a row of stationary bowling balls all of...
Suppose that a bowling ball collides elastically with a row of stationary bowling balls all of the same mass. All the bowling balls are confined to move only along the gutter beside the lane in a bowling alley. Prove that after the collision only one ball can be in motion. Use the laws of conservation of momentum and conservation of energy (kinetic energy) to support your answer.
2.(a) Ball A is released from rest. It collides with the stationary ball B with a...
2.(a) Ball A is released from rest. It collides with the stationary ball B with a velocity 3.2 m/s; immediately after the collision ball A travels in the same direction with velocity 2.3 m/s.    Ball A has mass 0.26 kg; ball B has mass 0.07 kg. Calculate (i) the velocity of ball B immediately after the collision.. (ii) the maximum height reached by ball B. (b) A driver is travelling at a constant speed of 15.4 m/s in a 1800...
A neutron collides elastically with a helium nucleus (at rest initially) whose mass is four times...
A neutron collides elastically with a helium nucleus (at rest initially) whose mass is four times that of the neutron. The helium nucleus is observed to move off at an angle θ′2=45∘. The neutron's initial speed is 6.6×105 m/s . the angle of the neutron after the collision: 76 below the initial direction of the neutron Determine the speeds of the two particles, v′n and v′He, after the collision.
A neutron collides elastically with a helium nucleus (at rest initially) whose mass is four times...
A neutron collides elastically with a helium nucleus (at rest initially) whose mass is four times that of the neutron. The helium nucleus is observed to rebound at an angle x = 43° from the neutron's initial direction. The neutron's initial speed is 6.4*10^5 m/s. Determine the angle at which the neutron rebounds, measured from its initial direction. a) Incorrect: Your answer is incorrect. 73.96° b) What is the speed of the neutron after the collision? Incorrect: Your answer is...
One electron collides elastically with a second electron initially at rest. After the collision, the radii...
One electron collides elastically with a second electron initially at rest. After the collision, the radii of their trajectories are 1.00 cm and 2.50cm. The trajectories are perpendicular to a uniform magnetic field of magnitude 0.0380 T. Determine the energy (in keV) of the incident electron.
a 100 g ball moving to the right at 4 meters per second collides head- on...
a 100 g ball moving to the right at 4 meters per second collides head- on with a 200g ball that's moving to the left at 3m/s. if the collision is perfectly elastic, what are the speeds of each ball after the collision if the collision is inelastic, what's the speed of the combined balls after the collision?
A 100 g ball moving to the right at 4.1 m/s catches up and collides with...
A 100 g ball moving to the right at 4.1 m/s catches up and collides with a 450 g ball that is moving to the right at 1.0 m/s. A. If the collision is perfectly elastic, what is the speed of the 100 g ball after the collision? B. If the collision is perfectly elastic, what is the speed of the 450 g ball after the collision? Express your answer to two significant figures and include the appropriate units. I...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT