Question

In: Physics

A proton collides elastically with another proton that is initially at rest. The incoming proton has...

A proton collides elastically with another proton that is initially at rest. The incoming proton has an initial speed of 4.00e5 m/s. The incoming proton has an initial speed of 4.00e5 m/s and makes a glancing collision with the second proton (at close separations, the protons exert a repulsive electrostatic force on each other). After the collision, one proton moves off at an angle of 30.0 degrees to the original direction of motion and the second deflects at an angle of __ to the same axis. Find the final speeds of the two protons and the angle ___.

v1f = ___
a. 3.46e5

b. 4.46e5

c. 5.46e5

d. 2.46e5

v2f =

a. 5.00e5

b. 4.00e5

c. 3.00e5

d. 2.00e5

angle ____ =

a. 30.0

b. 60.0

c. 90.0

d. 45.0

Solutions

Expert Solution


Related Solutions

A proton, moving with a velocity of viî, collides elastically with another proton that is initially...
A proton, moving with a velocity of viî, collides elastically with another proton that is initially at rest. Assuming that after the collision the speed of the initially moving proton is 1.40 times the speed of the proton initially at rest, find the following. (a) the speed of each proton after the collision in terms of vi initially moving proton initially at rest proton (b) the direction of the velocity vectors after the collision (assume that the initially moving proton...
A projectile proton with a speed of 380 m/s collides elastically with a target proton initially...
A projectile proton with a speed of 380 m/s collides elastically with a target proton initially at rest. The two protons then move along perpendicular paths, with the projectile path at 41° from the original direction. After the collision, what are the speeds of (a) the target proton and (b) the projectile proton? Please try to explain it as well as you can thank you
In a nuclear reaction an incoming proton, with an initial velocity v1, collides with another proton,...
In a nuclear reaction an incoming proton, with an initial velocity v1, collides with another proton, initially at rest. After the collision one proton goes off at 37° to the direction of v1. If the collision is perfectly elastic, find the velocities of the two protons after the collision.
A neutron collides elastically with a helium nucleus (at rest initially) whose mass is four times...
A neutron collides elastically with a helium nucleus (at rest initially) whose mass is four times that of the neutron. The helium nucleus is observed to move off at an angle θ′2=45∘. The neutron's initial speed is 6.6×105 m/s . the angle of the neutron after the collision: 76 below the initial direction of the neutron Determine the speeds of the two particles, v′n and v′He, after the collision.
A neutron collides elastically with a helium nucleus (at rest initially) whose mass is four times...
A neutron collides elastically with a helium nucleus (at rest initially) whose mass is four times that of the neutron. The helium nucleus is observed to rebound at an angle x = 43° from the neutron's initial direction. The neutron's initial speed is 6.4*10^5 m/s. Determine the angle at which the neutron rebounds, measured from its initial direction. a) Incorrect: Your answer is incorrect. 73.96° b) What is the speed of the neutron after the collision? Incorrect: Your answer is...
One electron collides elastically with a second electron initially at rest. After the collision, the radii...
One electron collides elastically with a second electron initially at rest. After the collision, the radii of their trajectories are 1.00 cm and 2.50cm. The trajectories are perpendicular to a uniform magnetic field of magnitude 0.0380 T. Determine the energy (in keV) of the incident electron.
A proton moving at 40 m/s due East collides with another proton at rest. Assume the...
A proton moving at 40 m/s due East collides with another proton at rest. Assume the collision is elastic and glancing. After the collision, one proton moves 30◦ south of East. Find the magnitude an direction of the other proton after the glancing collision
A proton moving at 40 m/s due East collides with another proton at rest. Assume the...
A proton moving at 40 m/s due East collides with another proton at rest. Assume the collision is elastic and glancing. After the collision, one proton moves 30◦ south of East. Find the magnitude an direction of the other proton after the glancing collision
A 100 g ball collides elastically with a 300 g ball that is at rest. If...
A 100 g ball collides elastically with a 300 g ball that is at rest. If the 100 g ball was traveling in the positive x-direction at 5 m/s before the collision, what are the velocities of the two balls after the collision?
A proton is initially at rest at x = d and an electron is initially at...
A proton is initially at rest at x = d and an electron is initially at rest at x = -d. At the same instant they are released. They subsequently a) fly away from each other. b) collide at x = 0. c) collide close to x = d. d) collide close to x = -d. e) orbit each other.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT