In: Finance
Question 1 | ||||||||
Richard must decide how to allocate the capital in his portfolio. | ||||||||
Richard has | $37,000 | available to invest. He finds the rates of | ||||||
return for four stocks for the past 12 years and the results are given | ||||||||
below. Richard plans to invest 25% of his funds in each stock. | ||||||||
a) How much will he invest in each stock? | $ | |||||||
(1 Mark) | ||||||||
b) The expected value of Richard's porfolio is: | % | |||||||
(Round your answer to one one-hundreth of a percent) | ||||||||
c) The standard deviation of Richard's portfolio is: | Enter Answer | % | ||||||
(1 Mark)(Round your answer to one one-hundredth of a percent) | ||||||||
↑ | ||||||||
Year | Stock A (%) | Stock B (%) | Stock C (%) | Stock D (%) | Enter your Final Answer Here | |||
1 | -6.470 | -1.700 | 2.440 | -10.730 | ||||
2 | 18.110 | 4.445 | -3.705 | 26.140 | ||||
3 | 26.790 | 6.615 | -5.875 | 39.160 | ||||
4 | 24.790 | 6.115 | -5.375 | 36.160 | ||||
5 | -16.470 | -4.200 | 4.940 | -25.730 | ||||
6 | 32.630 | 8.075 | -7.335 | 47.920 | ||||
7 | 74.130 | 18.450 | -17.710 | 110.170 | ||||
8 | 27.050 | 6.680 | -5.940 | 39.550 | ||||
9 | 14.330 | 3.500 | -2.760 | 20.470 | ||||
10 | 20.110 | 4.945 | -4.205 | 29.140 | ||||
11 | -10.330 | -2.665 | 3.405 | -16.520 | ||||
12 | -0.470 | -0.200 | 0.940 | -1.730 |
Question 2 | ||||||||||||
Anna is a Vice President at the J Corporation. The company is considering | ||||||||||||
investing in a new factory and Anna must decide whether it is a feasible | ||||||||||||
project. In order to assess the viability of the project, Anna must first calculate | ||||||||||||
the rate of return that equity holders expect from the company stock. The | ||||||||||||
annual returns for J Corp. and for a market index are given below. Currently, | ||||||||||||
the risk-free rate of return is | 1.9% | and the market risk-premium is | 6.1% | . | ||||||||
a) What is the beta of J Corp.'s stock? | 0.70 | |||||||||||
(1 Mark)(Round your answer to two decimal places) | ||||||||||||
b) Using the CAPM model, what is the expected rate of return on J Corp. stock for the coming year? | 5.64 | % | ||||||||||
(2 Mark)(Round your answer to one one-hundreth of a percent) | ↑ | |||||||||||
Year | J Corp. Return (%) | Market Return (%) | Enter your Final Answer Here | |||||||||
1 | -2.63 | -3.70 | ||||||||||
2 | 6.59 | 8.59 | ||||||||||
3 | 9.85 | 12.93 | ||||||||||
4 | 9.10 | 11.93 | ||||||||||
5 | -6.38 | -8.70 | ||||||||||
6 | 12.04 | 15.85 | ||||||||||
7 | 27.60 | 36.60 | ||||||||||
8 | 9.95 | 13.06 | ||||||||||
9 | 5.18 | 6.70 | ||||||||||
10 | 7.34 | 9.59 | ||||||||||
11 | -4.07 | -5.63 | ||||||||||
12 | -0.37 | -0.70 | ||||||||||
Question 5 | 0.00 | ||||||||
Refer to Questions 1 and 2. Richard has just received an unexpected | |||||||||
bonus at work worth | $9,250 | and, given the J. Corp.'s reputation | |||||||
for excellent investment decision making, he will invest all of the bonus | |||||||||
in J Corp. stock. Given the rates of return for stocks A, B, C, and D | |||||||||
presented in Question 1 and the rates of return for J Corp. stock and | |||||||||
the market presented in Question 2, as well as the cash amounts he | |||||||||
is investing in stocks A, B, C, and D as you determined in Question 1, | |||||||||
a) What is the beta of Richard's portfolio? | Enter Answer | ||||||||
(round to two decimal points) | |||||||||
b) Richard's portfolio is… | Aggressive | } | |||||||
Defensive | Check only one box | ||||||||
Neither | |||||||||
↑ | |||||||||
Enter your Final Answer Here |
1. a. He will invest 25% in each of the stocks.
Total investment is 37000. So he will invest 25% * 37000 = $ 9250 in each stock (A, B, C and D).
b. Expected value of richard's portfolio = Weighted average of average returns of each stock.
Let the average return for stock A, B, C and D be rA, rB, rC and rD respectively.
So the expected value of the portfolio = 9250 * (1+rA) + 9250 * (1+rB) + 9250 * (1+rC) + 9250 * (1+rD)
Average returns of the stock is arithemetic average of the stock over all the years.
Year | Stock A (%) | Stock B (%) | Stock C (%) | Stock D (%) |
1 | -6.47 | -1.7 | 2.44 | -10.73 |
2 | 18.11 | 4.445 | -3.705 | 26.14 |
3 | 26.79 | 6.615 | -5.875 | 39.16 |
4 | 24.79 | 6.115 | -5.375 | 36.16 |
5 | -16.47 | -4.2 | 4.94 | -25.73 |
6 | 32.63 | 8.075 | -7.335 | 47.92 |
7 | 74.13 | 18.45 | -17.71 | 110.17 |
8 | 27.05 | 6.68 | -5.94 | 39.55 |
9 | 14.33 | 3.5 | -2.76 | 20.47 |
10 | 20.11 | 4.945 | -4.205 | 29.14 |
11 | -10.33 | -2.665 | 3.405 | -16.52 |
12 | -0.47 | -0.2 | 0.94 | -1.73 |
Average | 17.01666667 | 4.171666667 | -3.431666667 | 24.5 |
Thus,
rA = 17.02%
rB = 4.17%
rC = -3.43%
rD = 24.5%
Expected value of the portfolio = 9250 * (1+17.02%) + 9250 * (1+4.17%) + 9250 * (1-3.43%) + 9250 * (1+24.5%)
= 10824.04 + 9635.88 + 8932.57 + 11516.25 = $ 40908.74
Variance of the portfolio = Wa^2*Var(rA)+Wb^2*Var(rB)+Wc^2*Var(rc)+Wd^2*Var(rd)+2*Wa*Wb*Cov(A,B)+2*Wa*Wc*Cov(A,C)+2*Wa*Wd*Cov(A,D)+2*Wb*Wc*Cov(B,C)+2*Wb*Wd*Cov(B,D)+2*Wc*Wd*Cov(C,D)
W = weights of respective stocks
Wa=Wb=Wc=Wd=0.25
Year | Stock A (%) | Stock B (%) | Stock C (%) | Stock D (%) | Enter your Final Answer Here | |||
1 | -6.47% | -1.70% | 2.44% | -10.73% | ||||
2 | 18.11% | 4.45% | -3.71% | 26.14% | ||||
3 | 26.79% | 6.62% | -5.88% | 39.16% | ||||
4 | 24.79% | 6.12% | -5.38% | 36.16% | ||||
5 | -16.47% | -4.20% | 4.94% | -25.73% | ||||
6 | 32.63% | 8.08% | -7.34% | 47.92% | ||||
7 | 74.13% | 18.45% | -17.71% | 110.17% | ||||
8 | 27.05% | 6.68% | -5.94% | 39.55% | ||||
9 | 14.33% | 3.50% | -2.76% | 20.47% | ||||
10 | 20.11% | 4.95% | -4.21% | 29.14% | ||||
11 | -10.33% | -2.67% | 3.41% | -16.52% | ||||
12 | -0.47% | -0.20% | 0.94% | -1.73% | ||||
Covariance | ||||||||
A,B | 0.0136 | |||||||
A,C | -0.0034 | |||||||
A,D | -0.0203 | |||||||
B,C | -0.0034 | |||||||
B,D | 0.0203 | |||||||
C,D | -0.0203 | |||||||
Standard Deviation | ||||||||
A | 0.2432 | |||||||
B | 0.0608 | |||||||
C | 0.0608 | |||||||
D | 0.3648 | |||||||
Variance = Standard Deviation ^2
Using above formula, Variance of the portfolio = 0.01078
Standard Deviation of the portfolio = Sqrt (Variance) = 0.1038 = 10.38%