In: Finance
Question 1 | ||||||||||
Richard must decide how to allocate the capital in his portfolio. | ||||||||||
Richard has | $63,000 | available to invest. He finds the rates of | ||||||||
return for four stocks for the past 12 years and the results are given | ||||||||||
below. Richard plans to invest 25% of his funds in each stock. | ||||||||||
a) How much will he invest in each stock? | ||||||||||
(1 Mark) | ||||||||||
b) The expected return of Richard's porfolio is: | ||||||||||
(Round your answer to one one-hundreth of a percent) | ||||||||||
c) The standard deviation of Richard's portfolio return is: | ||||||||||
(1 Mark)(Round your answer to one one-hundredth of a percent) | ||||||||||
Year | Stock A (%) | Stock B (%) | Stock C (%) | Stock D (%) | ||||||
1 | -5.940 | -18.120 | 5.690 | -2.440 | ||||||
2 | 8.970 | 26.610 | -6.238 | 5.015 | ||||||
3 | 12.320 | 36.660 | -8.918 | 6.690 | ||||||
4 | 14.320 | 42.660 | -10.518 | 7.690 | ||||||
5 | -16.240 | -49.020 | 13.930 | -7.590 | ||||||
6 | 15.980 | 47.640 | -11.846 | 8.520 | ||||||
7 | 4.880 | 14.340 | -2.966 | 2.970 | ||||||
8 | 13.220 | 39.360 | -9.638 | 7.140 | ||||||
9 | 9.260 | 27.480 | -6.470 | 5.160 | ||||||
10 | 9.970 | 29.610 | -7.038 | 5.515 | ||||||
11 | -5.230 | -15.990 | 5.122 | -2.085 | ||||||
12 | -8.240 | -25.020 | 7.530 | -3.590 | ||||||
Answer :
1) Funds Available = $63000 i.e to be invested 25% in each stock.
So, Amount invested in each stock = 63000*25%
= 15750
So, Richard will invest $15,750 in each of the 4 stocks.
2) the expected return of Richard's portfolio is weighted average of the investment made in each stock.
First we need to calculate the return of each of the stock mentioned as-
Simple average of the last 12 years of return is calculated as = sum of return of Stock / 12
A = 53.27/12 = 4.43%
B = 156.21/12 = 13.01%
C = -31.36/12 = -2.61%
D = 32.995/12 = 2.75%
Weighted average return of Richard's portfolio = 25%* 4.43% + 25%*13.01% + 25%*(-2.61) + 25%*2.75%
= 4.4%
c) the Standard Deviation of Richard's portfolio is weighted average Standard Deviation of the investment made in each stock.
So, First we need to calculate the Standard Deviation of the Stock.
Steps to Calculate Standard Deviation :
Step 1: First calculate Mean of the given return.
Step 2: Subtract each of the return by the mean calculated in Step 1
Step 3: Make squares of each of the deviation calculated in step 2 and add them,
Step 4: Divide the sum of squares of Deviations by Total number of items(years or months) -1 i.e when the data provides return for 12 years, the sum of squares of Deviations should be divided by 11(12-1).
Step 5: the square root of Step 4 is the standard Deviation.
Step 2 | Step 3 | ||||||||||||
Year | Stock A (%) | return- mean | Deviation ^2 | Stock B (%) | return- mean | Deviation ^2 | Stock C (%) | return- mean | Deviation ^2 | Stock D (%) | return- mean | Deviation ^2 | |
1 | -5.94 | -10.3791667 | 107.727101 | -18.12 | -31.138 | 969.543906 | 5.69 | 8.30333333 | 68.9453444 | -2.44 | -5.18958333 | 26.9317752 | |
2 | 8.97 | 8.97 | 80.4609 | 26.61 | 26.61 | 708.0921 | -6.238 | -6.238 | 38.912644 | 5.015 | 5.015 | 25.150225 | |
3 | 12.32 | 12.32 | 151.7824 | 36.66 | 36.66 | 1343.9556 | -8.918 | -8.918 | 79.530724 | 6.69 | 6.69 | 44.7561 | |
4 | 14.32 | 14.32 | 205.0624 | 42.66 | 42.66 | 1819.8756 | -10.518 | -10.518 | 110.628324 | 7.69 | 7.69 | 59.1361 | |
5 | -16.24 | -16.24 | 263.7376 | -49.02 | -49.02 | 2402.9604 | 13.93 | 13.93 | 194.0449 | -7.59 | -7.59 | 57.6081 | |
6 | 15.98 | 15.98 | 255.3604 | 47.64 | 47.64 | 2269.5696 | -11.846 | -11.846 | 140.327716 | 8.52 | 8.52 | 72.5904 | |
7 | 4.88 | 4.88 | 23.8144 | 14.34 | 14.34 | 205.6356 | -2.966 | -2.966 | 8.797156 | 2.97 | 2.97 | 8.8209 | |
8 | 13.22 | 13.22 | 174.7684 | 39.36 | 39.36 | 1549.2096 | -9.638 | -9.638 | 92.891044 | 7.14 | 7.14 | 50.9796 | |
9 | 9.26 | 9.26 | 85.7476 | 27.48 | 27.48 | 755.1504 | -6.47 | -6.47 | 41.8609 | 5.16 | 5.16 | 26.6256 | |
10 | 9.97 | 9.97 | 99.4009 | 29.61 | 29.61 | 876.7521 | -7.038 | -7.038 | 49.533444 | 5.515 | 5.515 | 30.415225 | |
11 | -5.23 | -5.23 | 27.3529 | -15.99 | -15.99 | 255.6801 | 5.122 | 5.122 | 26.234884 | -2.085 | -2.085 | 4.347225 | |
12 | -8.24 | -8.24 | 67.8976 | -25.02 | -25.02 | 626.0004 | 7.53 | 7.53 | 56.7009 | -3.59 | -3.59 | 12.8881 | |
Sum | 53.27 | 1543.1126 | 156.21 | 13782.4254 | -31.36 | 908.40798 | 32.995 | 420.24935 | |||||
Step 1 | Mean | 4.439167 | 13.0175 | -2.61333 | 2.749583 | ||||||||
Step 4 | 140.2829637 | 1252.947764 | 82.58254368 | 38.20448638 | |||||||||
Step 5 | Standard Deviation | 11.84411093 | 35.39700219 | 9.087493806 | 6.180977785 |
Stock | Standard Deviation | Weights given | Weighted Average Standard Deviation |
A | 11.84 | 25% | 2.96 |
B | 35.40 | 25% | 8.85 |
C | 9.09 | 25% | 2.27 |
D | 6.18 | 25% | 1.55 |
Portfolio | 15.63 |