In: Physics
Tc-99m is a common radioisotope used in medical imaging. It is a metastable isotope that emits low energy gamma radiation (140 keV) with a half-life of roughly 6 hours. This half-life is extremely long for a metastable state, which makes it useful for studying gamma emission. This particular radioisotope has a biological half-life of roughly 1 day while in a human, and an atomic mass of 1.627 × 10−25 kg/atom.
Part a)
Te=effective half-life
Tp=physical half-life = 24 hour
Tb=biological half-life = 6 hour
Te = (Tp * Tb )/ (Tp + Tb )
Placing values ,
Te = ( 24 * 6 ) (24 + 6 )
= 4.8 hour
Part b )
R= (0.693*N') / Te(half life ) .... (1)
R = activity
N'= no of atoms = 1.41 * 10-12kg / 1.627 × 10-25 kg/atom
=8.66 * 1012 atoms
Placing values in the equation
R = (0.693 * 8.66 * 1012)/ 4.8
= 1.25 * 1012 decays hr-1 or 3.37*108 decays per second(Bq)
Part c)
First we will calculate the amount left , then we will apply the equation (1)
.....( 2
N0 = initial quantity = 1.41 * 10 -12kg
N = quantity at time t
t = 9.5 hour
λ =decay constant = ln (2) / Te ( half life )
λ *t = (ln (2) *t )/ Te ( half life )
Placing values we get
λ = 1.372
Placing values in eq 2
N = 1.41 * 10 -12kg ( e -1.372)
= 3.576 * 10 -13kg
So the no of atoms (N' ) = 3.576 * 10 -13kg /1.627 × 10-25 kg/atom
= 2.198 * 1012 atoms
Placing values in eq 1)
R = (0.693*N') / Te(half life)
= 3.173 * 1011 decays per hour or 8.815 * 107 decays per second (Bq)