In: Statistics and Probability
HW 44. 2
A shareholders' group is lodging a protest against your company.
The shareholders group claimed that the mean tenure for a chief
exective office (CEO) was at least 11 years. A survey of 83
companies reported in The Wall Street Journal found a sample mean
tenure of 9 years for CEOs with a standard deviation of s=s= 4.4
years (The Wall Street Journal, January 2, 2007). You don't know
the population standard deviation but can assume it is normally
distributed.
You want to formulate and test a hypothesis that can be used to
challenge the validity of the claim made by the group, at a
significance level of α=0.005α=0.005. Your hypotheses are:
      Ho:μ≥11Ho:μ≥11
      HA:μ<11HA:μ<11
What is the test statistic for this sample?
test statistic =  (Report answer accurate to 3 decimal
places.)
What is the p-value for this sample?
p-value =  (Report answer accurate to 4 decimal
places.)
The p-value is...
This test statistic leads to a decision to...
As such, the final conclusion is that...
Ho :   µ =   11  
           
   
Ha :   µ <   11  
    (Left tail test)      
   
          
           
   
Level of Significance ,    α =   
0.01          
       
sample std dev ,    s =    4.4000  
           
   
Sample Size ,   n =    83  
           
   
Sample Mean,    x̅ =   9.0000  
           
   
          
           
   
degree of freedom=   DF=n-1=   82  
           
   
          
           
   
Standard Error , SE = s/√n =   4.4000   / √
   83   =   0.4830  
   
t-test statistic= (x̅ - µ )/SE = (  
9.000   -   11   ) /   
0.48296   =   -4.141
          
           
         
p-Value   =   0.0000   [Excel formula
=t.dist(t-stat,df) ]      
       
p-value<α, Reject null hypothesis
THANKS
revert back for doubt
please upvote