Question

In: Math

Let A0.A1,A2,A3,A4 devide a unit circle (circle of radius one) into five equal parts. Prove that...

Let A0.A1,A2,A3,A4 devide a unit circle (circle of radius one) into five equal parts. Prove that the chords A0 A1, A0 A2 satisfy:

(A0 A1 * A0 A2)^2 = 5.

Solutions

Expert Solution

Consider a circle with radius r and center O.

Since A0, A1, A2, A3, A4 devide this unit circle into five equal parts.

Hence radius (r) = 1

Now consider the two chords A0A1 and A0A2.

Using Cosine rule in triangle OA0A1,

_____(1)

Using Cosine rule in triangle OA0A2,

Put value of from eq.(1) ---

Put


Related Solutions

covert the schema into 3NF. TableC (a1,a2,a3,a4,a5) functionally dependencies: a1 --> {a2,a3,a5} a4 --> {a1,a2,a3,a5} a3...
covert the schema into 3NF. TableC (a1,a2,a3,a4,a5) functionally dependencies: a1 --> {a2,a3,a5} a4 --> {a1,a2,a3,a5} a3 -->{a5} Answer: Relation1: Relation2:
Let A = {a1, a2, a3, . . . , an} be a nonempty set of...
Let A = {a1, a2, a3, . . . , an} be a nonempty set of n distinct natural numbers. Prove that there exists a nonempty subset of A for which the sum of its elements is divisible by n.
Let's say there is a group of five receptors (A1,A2,A3,A4,A5) that are expressed in various types...
Let's say there is a group of five receptors (A1,A2,A3,A4,A5) that are expressed in various types of tissues on the human body. But the A1 receptor, is the only family expressed in 1 type of cell. How does the A1 receptor but not the other A receptors are expressed on the cell?
Consider the following eight examples: A1 = (4,20), A2 = (4,10), A3 = (16,8), A4 =...
Consider the following eight examples: A1 = (4,20), A2 = (4,10), A3 = (16,8), A4 = (10,16), A5 = (14,10), A6 = (12,8), A7 = (2,4), A8 = (8,18) The distance function is Euclidian distance. Use single-link, complete-link agglomerative clustering, and centroid techniques to cluster these examples. Show your calculations and draw the dendrograms for each technique.
Find an arithmetic code for a symbol p4p4p3 for the source alphabet {a1, a2, a3, a4,...
Find an arithmetic code for a symbol p4p4p3 for the source alphabet {a1, a2, a3, a4, a5}, with symbol probabilities p1 = 0.11, p2 = 0.05, p3 = 0.10, p4 = 0.70, and p5 = 0.04. Show the work please.
2. Write the hexadecimal numbers in the registers of $a0, $a1, $a2, $a3 after the following...
2. Write the hexadecimal numbers in the registers of $a0, $a1, $a2, $a3 after the following codes running: ori $a0, $0, 11 ori $a1, $0, 19 addi $a1, $a1, -7 slt $t2, $a1, $a0 beq $t2, $0, label addi $a2, $a1, 0 sub $a3, $a1,$a0 j end_1 label: ori $a2, $a0, 0 add $a3, $a1, $a0 end_1: xor $t2, $a1, $a0 *Values in $a0, $a1, $a2, $a3 after the above instructions are executed.
For the arithmetic progression a1, a2, a3 .......... if a4/a7 = 2/3. Find a6/a8 ?
For the arithmetic progression a1, a2, a3 .......... if a4/a7 = 2/3. Find a6/a8 ?
A four-bit binary number is represented as A3A2A1A0, where A3, A2, A1, and A0 represent the...
A four-bit binary number is represented as A3A2A1A0, where A3, A2, A1, and A0 represent the individual bits and A0 is equal to the LSB. Design a logic circuit that will produce a HIGH output whenever the binary number is greater than 0010 and less than 1000. how can I do this by using sum of product, not K map
We say that an infinite sequence a0,a1,a2,a3,… of real numbers has the limit L if for...
We say that an infinite sequence a0,a1,a2,a3,… of real numbers has the limit L if for every strictly positive number ε, there is a natural number n such that all the elements an,an+1,an+2,… are within distance ε of the value L. In this case, we write lim a = L. Express the condition that lim a = L as a formula of predicate logic. Your formula may use typical mathematical functions like + and absolute value and mathematical relations like...
Let f: X→Y be a map with A1, A2⊂X and B1,B2⊂Y (A) Prove f(A1∪A2)=f(A1)∪f(A2). (B) Prove...
Let f: X→Y be a map with A1, A2⊂X and B1,B2⊂Y (A) Prove f(A1∪A2)=f(A1)∪f(A2). (B) Prove f(A1∩A2)⊂f(A1)∩f(A2). Give an example in which equality fails. (C) Prove f−1(B1∪B2)=f−1(B1)∪f−1(B2), where f−1(B)={x∈X: f(x)∈B}. (D) Prove f−1(B1∩B2)=f−1(B1)∩f−1(B2). (E) Prove f−1(Y∖B1)=X∖f−1(B1). (Abstract Algebra)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT