Question

In: Chemistry

A buffered solution containing dissolved aniline, C6H5NH2, and aniline hydrochloride, C6H5NH3Cl, has a pH of 5.61....

A buffered solution containing dissolved aniline, C6H5NH2, and aniline hydrochloride, C6H5NH3Cl, has a pH of 5.61.

a) Determine the concentration of C6H5NH3 in the solution if the concentration of C6H5NH2 is 0.200 M. The pKb of aniline is 9.13.

b) Calculate the change in pH of the solution, ΔpH, if 0.387 g NaOH is added to the buffer for a final volume of 1.75 L. Assume that any contribution of NaOH to the volume is negligible.

Solutions

Expert Solution


Related Solutions

A buffered solution containing dissolved aniline, C6H5NH2, and aniline hydrochloride, C6H5NH3Cl, has a pH of 5.47....
A buffered solution containing dissolved aniline, C6H5NH2, and aniline hydrochloride, C6H5NH3Cl, has a pH of 5.47. a) Determine the concentration of C6H5NH3+ in the solution if the concentration of C6H5NH2 is 0.200 M. The pKb of aniline is 9.13. b) Calculate the change in pH of the solution, delta pH , if 0.393 g NaOH is added to the buffer for a final volume of 1.55 L. Assume that any contribution of NaOH to the volume is negligible.
A buffered solution containing dissolved aniline, C6H5NH2, and aniline hydrochloride, C6H5NH3Cl, has a pH of 5.40....
A buffered solution containing dissolved aniline, C6H5NH2, and aniline hydrochloride, C6H5NH3Cl, has a pH of 5.40. a) Determine the concentration of C6H5NH3 in the solution if the concentration of C6H5NH2 is 0.215 M. The pKb of aniline is 9.13. b) Calculate the change in pH of the solution, ΔpH, if 0.362 g NaOH is added to the buffer for a final volume of 1.45 L.
Calculate the pH of the following: a) A 0.50 M solution of aniline (C6H5NH2) b) A...
Calculate the pH of the following: a) A 0.50 M solution of aniline (C6H5NH2) b) A 0.015 M hydrochloric acid solution c) A 0.0140 M solution of CA(OH)2 d) A 0.500 M solution of NaNO3 e) A 0.05 M Na2O Solution
Aniline hydrochloride, [C6H5NH3]Cl, is a weak acid. Its conjugate base is the weak base aniline C6H5NH2....
Aniline hydrochloride, [C6H5NH3]Cl, is a weak acid. Its conjugate base is the weak base aniline C6H5NH2. Assume 50.0 mL of 0.100 M C6H5NH3 is titrated with 0.125M NaOH. (C6H5NH3)Cl Ka = 2.40 X 10-5. What is the ph at 40.0ml Calculate the pH after 100.0 ml of NaOH has been added
Calculate the pH of a .215 M aqueous solution of aniline C6H5NH2, Kb= 7.4x10^-10 and the...
Calculate the pH of a .215 M aqueous solution of aniline C6H5NH2, Kb= 7.4x10^-10 and the equilibrium concentrations of the weak base and it’s conjugate acid Calculate the pH of a 0.0454 M aqueous solution of triethelyene C2H5(3)N, Kb= 5.2x10^-4 and the equilibrium concentrations of the weak base and its conjugate acid
Calculate the pH of 4.55 M aniline, C6H5NH2 ( Kb = 4.0 x 10^-10)
Calculate the pH of 4.55 M aniline, C6H5NH2 ( Kb = 4.0 x 10^-10)
1. The pH of 0.070 M aniline (C6H5NH2) is 8.73. What are its Kb and pKb?...
1. The pH of 0.070 M aniline (C6H5NH2) is 8.73. What are its Kb and pKb? 2. What mass of potassium hydrogen sulfate is required to make 309 mL of a solution with a pH of 2.27? (The Ka of HSO4? = 0.012.) 3.What is the pKa of iodic acid if the iodate ion concentration in a 0.058-M solution of HIO3 is 0.045 M? --I got the answer 1.457 but it is marking it as wrong and im not sure...
A solution containing 45.00 ml of 0.0500 M metal ion buffered to pH = 10.00 was...
A solution containing 45.00 ml of 0.0500 M metal ion buffered to pH = 10.00 was titrated with 0.0400 M EDTA. Answer the following questions and enter your results with numerical value only. Calculate the equivalence volume, Ve, in milliliters. Calculate the concentration (M) of free metal ion at V = 1/2 Ve. Calculate the fraction (αY4-) of free EDTA in the form Y4-. Keep 2 significant figures. If the formation constant (Kf) is 1012.00. Calculate the value of the...
A solution containing 40.00 mL of 0.0500 M metal ion buffered to pH = 12.00 was...
A solution containing 40.00 mL of 0.0500 M metal ion buffered to pH = 12.00 was titrated with 0.0400 M EDTA. Calculate the fraction (αY4-) of free EDTA in the form Y4−. Keep 2 significant figures.
A solution containing 45.00 mL of 0.0500 M metal ion buffered to pH = 11.00 was...
A solution containing 45.00 mL of 0.0500 M metal ion buffered to pH = 11.00 was titrated with 0.0400 M EDTA. Answer the following questions and enter your results with numerical value only. Calculate the equivalence volume, Ve, in milliliters. 56.2 You are correct. Your receipt no. is 157-1182 Help: Receipt Previous Tries Calculate the concentration (M) of free metal ion at V = 1/2 Ve. 0.0154 You are correct. Your receipt no. is 157-4788 Help: Receipt Previous Tries Calculate...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT