Question

In: Physics

A puck is moving on an air hockey table. Relative to an x, y coordinate system...

A puck is moving on an air hockey table. Relative to an x, y coordinate system at time t = 0 s, the x components of the puck's initial velocity and acceleration are v0x = +2.2 m/s anda. The y components of the puck's initial velocity and acceleration are and . Find (a) the magnitude v and (b) the direction ? of the puck's velocity at a time of . Specify the direction relative to the +x axis.x = +7.7 m/s2v0y = +5.3 m/say = -2.4 m/s2t = 0.50 s.

Solutions

Expert Solution

Here is what I solved before, please modify the figures as per your question. Please let me know if you have further questions. Ifthis helps then kindly rate 5-stars.

A puck is moving on an air hockey table. Relative to an x, y coordinate system at time t = 0 s, the x components of the puck's initial velocity and acceleration are v0x = +3.0 m/s and ax = +8.7 m/s2. The y components of the puck's initial velocity and acceleration are v0y = +9.2 m/s and ay = -1.7 m/s2. Find (a) the magnitude v and (b) the direction ? of the puck's velocity at a time of t = 0.50 s. Specify the direction relative to the +x axis.       

Answer

Initial velocity Vo = 3 i + 9.2 j m/s

Acceleration a = 8.7 i - 1.7 j   m/s^2

(a)

Time t = 0.5 s

Final velocity V = Vo + at

                         = (3 i + 9.2 j) + (8.7 i - 1.7 j)(0.5)

                         = 7.35 i + 8.35 j

Magnitude |V| = Sqrt[(7.35)^2 + (8.35)^2]

                       = Sqrt[54.02 + 69.72]

                       = Sqrt[123.74]

                       = 11.12 m/s

(b)

Direction ? = Tan^-1[8.35/7.35]

                 = Tan^-1[1.136]

                 = 48.64 degrees above the + ve X axis


Related Solutions

On a frictionless horizontal air table, puck A (with mass 0.253 kg) is moving toward puck...
On a frictionless horizontal air table, puck A (with mass 0.253 kg) is moving toward puck B (with mass 0.374 kg) which is initially at rest. After the collision, puck A has velocity 0.119 m/s to the left and puck B has velocity 0.649 m/s to the right. Part A: What was the speed vAi of puck A before the collision? Part B: Calculate ΔK, the change in the total kinetic energy of the system that occurs during the collision.
On a frictionless air table, Puck A with mass ?A = 0.120 kg is moving at...
On a frictionless air table, Puck A with mass ?A = 0.120 kg is moving at speed ?A = 2.80 m/s in the +? direction when at the origin it hits Puck B (of mass ?B = 0.140 kg), which is initially at rest. Puck A is deflected in the collision into a final velocity of ?'A = 2.10 m/s at an angle of 30° from the + ? axis. The collision is not elastic. a) Write down equations expressing...
The drawing shows a collision between two pucks on an air-hockey table. Puck A has a...
The drawing shows a collision between two pucks on an air-hockey table. Puck A has a mass of 0.0290 kg and is moving along the x axis with a velocity of +6.85 m/s. It makes a collision with puck B, which has a mass of 0.0580 kg and is initially at rest. The collision is not head-on. After the collision, the two pucks fly apart with the angles shown in the drawing. Find the speed of (a) puck A and...
Two pucks collide on an air hockey table. Puck A has a mass of 17.0 g...
Two pucks collide on an air hockey table. Puck A has a mass of 17.0 g and is initially traveling in the +x direction at 7.30 m/s. Puck B has a mass of 51.0 g and is initially at rest. After the pucks collide, puck A moves away at an angle of 42.0 degrees above the +x axis, while puck B travels at an angle of 38.0 degrees below the +x axis. 1. Calculate puck A's final speed. 2. Calculate...
The drawing shows a collision between two pucks on an air-hockey table. Puck A has a...
The drawing shows a collision between two pucks on an air-hockey table. Puck A has a mass of 0.22 kg and is moving along the x axis with a velocity of 5.80 m/s. It makes a collision with puck B, which has a mass of 0.44 kg and is initially at rest. After the collision, the two pucks fly apart with angles as shown in the drawing (? = 66° and ? = 32°). Find the final speed of puck...
The drawing shows a collision between two pucks on an air-hockey table. Puck A has a...
The drawing shows a collision between two pucks on an air-hockey table. Puck A has a mass of 0.0240 kg and is moving along the x axis with a velocity of +6.27 m/s. It makes a collision with puck B, which has a mass of 0.0480 kg and is initially at rest. The collision is not head-on. After the collision, the two pucks fly apart with the angles shown in the drawing. Find the speed of (a) puck A and...
Two identical pucks collide on an air hockey table. One puck was originally at rest. (a)...
Two identical pucks collide on an air hockey table. One puck was originally at rest. (a) If the incoming puck has a speed of 6.00 m/s and scatters to an angle of 30.0
On a frictionless horizontal air table, puck A (with mass 0.245 kg ) is moving toward...
On a frictionless horizontal air table, puck A (with mass 0.245 kg ) is moving toward puck B (with mass 0.374 kg ), which is initially at rest. After the collision, puck A has velocity 0.118 m/s to the left, and puck B has velocity 0.655 m/s to the right. A: What was the speed vAi of puck A before the collision? B: Calculate ΔKΔKDeltaK, the change in the total kinetic energy of the system that occurs during the collision.
On a frictionless, horizontal air table, puck A (with mass 0.250 kg ) is moving toward...
On a frictionless, horizontal air table, puck A (with mass 0.250 kg ) is moving toward puck B (with mass 0.400 kg ), which is initially at rest. After the collision, puck A has a velocity of 0.150 m/s to the left, and puck B has a velocity of 0.620 m/s to the right. a.What was the speed of puck A before the collision? b. Calculate the change in the total kinetic energy of the system that occurs during the...
On a frictionless horizontal air table, puck A (with mass 0.255 kg ) is moving toward...
On a frictionless horizontal air table, puck A (with mass 0.255 kg ) is moving toward puck B (with mass 0.375 kg ), which is initially at rest. After the collision, puck A has velocity 0.117 m/s to the left, and puck B has velocity 0.650 m/s to the right. What was the speed vAi of puck A before the collision? Calculate ΔK, the change in the total kinetic energy of the system that occurs during the collision.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT