In: Statistics and Probability
This sample data was collected to study the relationship between the rent charged with the size of a dwelling. Identify the dependent variable and independent variable. Do they have a cause and effect relationship? Explain. Run Regression on this data. Make sure to check the boxes for charts, normal distribution, residual charts, etc. Write the null and alternate hypotheses to test if the linear relationship (slope) is significant or not. Conduct F test to determine if you are going to accept or reject the nul hypothesis. You can use p-value test also. Write down the regression model (Linear equation) that the regression program output.
square feet/ Rent
655 1975
663 1581
718 1429
665 1350
715 1633
903 1807
708 1632
785 1528
955 1800
525 1206
630 1421
731 1870
694 1858
685 1782
675 1750
750 1440
610 1212
531 1176
750 1270
675 1503
725 1595
820 1795
660 998
535 1080
628 1337
434 1075
775 1574
707 1556
702 1300
872 1400
578 1200
470 1450
770 1590
784 1525
872 1575
675 1478
768 1450
797 1750
600 1150
660 1850
925 1650
650 1275
550 1100
665 1398
916 1600
850 1350
750 1550
900 1300
690 1600
574 1300
800 1500
775 1400
873 1650
814 1575
739 1600
820 1425
665 1270
Using Excel, go to Data, select Data Analysis, choose Regression. Put square feet in X input range and rent in Y input range. Tick Residual Plot, Normal Probability Plot and Line Fit Plot.
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.500 | |||||
R Square | 0.250 | |||||
Adjusted R Square | 0.236 | |||||
Standard Error | 198.486 | |||||
Observations | 57 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 722265.743 | 722265.743 | 18.333 | 0.000 | |
Residual | 55 | 2166819.239 | 39396.713 | |||
Total | 56 | 2889084.982 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 781.877 | 165.695 | 4.719 | 0.000 | 449.816 | 1113.937 |
Square Feet | 0.978 | 0.228 | 4.282 | 0.000 | 0.520 | 1.436 |
RESIDUAL OUTPUT | ||
Observation | Predicted Y | Residuals |
1 | 1422.689 | 552.311 |
2 | 1430.516 | 150.484 |
3 | 1484.325 | -55.325 |
4 | 1432.473 | -82.473 |
5 | 1481.390 | 151.610 |
6 | 1665.318 | 141.682 |
7 | 1474.541 | 157.459 |
8 | 1549.874 | -21.874 |
9 | 1716.191 | 83.809 |
10 | 1295.505 | -89.505 |
11 | 1398.231 | 22.769 |
12 | 1497.043 | 372.957 |
13 | 1460.845 | 397.155 |
14 | 1452.039 | 329.961 |
15 | 1442.256 | 307.744 |
16 | 1515.632 | -75.632 |
17 | 1378.664 | -166.664 |
18 | 1301.375 | -125.375 |
19 | 1515.632 | -245.632 |
20 | 1442.256 | 60.744 |
21 | 1491.173 | 103.827 |
22 | 1584.115 | 210.885 |
23 | 1427.581 | -429.581 |
24 | 1305.288 | -225.288 |
25 | 1396.274 | -59.274 |
26 | 1206.476 | -131.476 |
27 | 1540.090 | 33.910 |
28 | 1473.563 | 82.437 |
29 | 1468.671 | -168.671 |
30 | 1634.989 | -234.989 |
31 | 1347.357 | -147.357 |
32 | 1241.696 | 208.304 |
33 | 1535.198 | 54.802 |
34 | 1548.895 | -23.895 |
35 | 1634.989 | -59.989 |
36 | 1442.256 | 35.744 |
37 | 1533.242 | -83.242 |
38 | 1561.614 | 188.386 |
39 | 1368.881 | -218.881 |
40 | 1427.581 | 422.419 |
41 | 1686.841 | -36.841 |
42 | 1417.798 | -142.798 |
43 | 1319.964 | -219.964 |
44 | 1432.473 | -34.473 |
45 | 1678.036 | -78.036 |
46 | 1613.466 | -263.466 |
47 | 1515.632 | 34.368 |
48 | 1662.383 | -362.383 |
49 | 1456.931 | 143.069 |
50 | 1343.444 | -43.444 |
51 | 1564.549 | -64.549 |
52 | 1540.090 | -140.090 |
53 | 1635.967 | 14.033 |
54 | 1578.245 | -3.245 |
55 | 1504.870 | 95.130 |
56 | 1584.115 | -159.115 |
57 | 1432.473 | -162.473 |
Percentile | Y |
0.877 | 998 |
2.632 | 1075 |
4.386 | 1080 |
6.140 | 1100 |
7.895 | 1150 |
9.649 | 1176 |
11.404 | 1200 |
13.158 | 1206 |
14.912 | 1212 |
16.667 | 1270 |
18.421 | 1270 |
20.175 | 1275 |
21.930 | 1300 |
23.684 | 1300 |
25.439 | 1300 |
27.193 | 1337 |
28.947 | 1350 |
30.702 | 1350 |
32.456 | 1398 |
34.211 | 1400 |
35.965 | 1400 |
37.719 | 1421 |
39.474 | 1425 |
41.228 | 1429 |
42.982 | 1440 |
44.737 | 1450 |
46.491 | 1450 |
48.246 | 1478 |
50.000 | 1500 |
51.754 | 1503 |
53.509 | 1525 |
55.263 | 1528 |
57.018 | 1550 |
58.772 | 1556 |
60.526 | 1574 |
62.281 | 1575 |
64.035 | 1575 |
65.789 | 1581 |
67.544 | 1590 |
69.298 | 1595 |
71.053 | 1600 |
72.807 | 1600 |
74.561 | 1600 |
76.316 | 1632 |
78.070 | 1633 |
79.825 | 1650 |
81.579 | 1650 |
83.333 | 1750 |
85.088 | 1750 |
86.842 | 1782 |
88.596 | 1795 |
90.351 | 1800 |
92.105 | 1807 |
93.860 | 1850 |
95.614 | 1858 |
97.368 | 1870 |
99.123 | 1975 |
1. Dependent variable - Rent
Independent variable - Square feet
2. Do they have a cause and effect relationship? Explain.
H0: There exists no cause and effect relationship between square feet and rent
H1: There exists a cause and effect relationship between square feet and rent
p-value (Sqaure feet) = 0.000
Since p-value is less than 0.05, we reject the null hypothesis.
So, there exists a a cause and effect relationship between square feet and rent.
3. H0: There exists no linear relationship between square feet and rent
H1: There exists a linear relationship between square feet and rent
p-value (Significance F) = 0.000
Since p-value is less than 0.05, we reject the null hypothesis.
So, there exists a linear relationship between square feet and rent.
4. Regression model
Rent = 781.877 + 0.978*Sqaure Feet