Question

In: Physics

The scattered gamma rays from a source of 1332 keV have a distribution of energies as...

The scattered gamma rays from a source of 1332 keV have a distribution of energies as a function of the scattering angle q as follow:

Eg0- is the initial gamma energy, Eg is the energy of the scattered gammaand, q is the scattering angle.

Do your calculation and choose the correct answer for the following:

  • The maximum energy of the scattered gamma, Egmax
  • The maximum energy of the scattered electron, Ee-max
  • at what angle, q, you should stand to get an energy of 1000 keV
  1. Eg-max =1332 keV , Ee-max =214 keV , q = 300
  2. Eg-max =1332 keV , Ee-max =214 keV , q = 600
  3. Eg-max =1332 keV , Ee-max =117.6 keV , q = 900
  4. None of the above

Solutions

Expert Solution

Note: If you have any question / doubt please let me know.


Related Solutions

2. A 662 keV gamma ray from 137Cs decay is Compton scattered at an angle θ....
2. A 662 keV gamma ray from 137Cs decay is Compton scattered at an angle θ. (a) What is the energy of the resulting gamma ray after scattering at 90◦? (b) What is the energy of the resulting gamma ray after scattering at 180◦? (c) What is the maximum amount of energy that the gamma ray can deposit in a single Compton scatter?
Gamma rays of 1 MeV are Compton scattered at an angle of 80 degrees. What is...
Gamma rays of 1 MeV are Compton scattered at an angle of 80 degrees. What is the energy of the scattered photons and electrons? Determine the speed and angle of the electrons after the collision.
Gamma spectrum. The measured gamma spectrum from a certain radionuclide shows a peak at 511 keV,...
Gamma spectrum. The measured gamma spectrum from a certain radionuclide shows a peak at 511 keV, however this radionuclide is not known to emit such a gamma ray. Give two plausible explanations for the origin of this peak in the spectrum.
X-rays of wavelength λ = 0.140 nm are scattered from carbon. A. What is the Compton...
X-rays of wavelength λ = 0.140 nm are scattered from carbon. A. What is the Compton wavelength shift for photons detected at angle (relative to the incident beam) of exactly 45.0 degrees? Express your answer to three significant figures and include the appropriate units. λ'- λ = ? B. What is the Compton wavelength shift for photons detected at angle (relative to the incident beam) of exactly 120 degrees? Express your answer to three significant figures and include the appropriate...
The Compton Effect. X-rays of wavelength ? = 61.0 pm are scattered from a thin foil...
The Compton Effect. X-rays of wavelength ? = 61.0 pm are scattered from a thin foil of boron. What is the wavelength of the Compton scattered photons detected at the following angles (relative to the incident beam)? (Your answer should use three significant figures.) (a) 15
The scattered photon has an energy of 120 keV and the electron recoils with an energy...
The scattered photon has an energy of 120 keV and the electron recoils with an energy of 40 keV in Compton scattering. Find: (a) the incident photo wavelength (b) the scattering angle of the photon (c) the angle at which the electron recoils
a. Compute the energy of a photon with incident energy 200 kev scattered at 90° in...
a. Compute the energy of a photon with incident energy 200 kev scattered at 90° in a Compton event. b. Compute the energy of the backscattered photon from a 400 kev incident photon. c. Compute the energy of the recoil electron.
Find the fractional energy loss for a 20-keV X-ray scattered from an electron at angle 180...
Find the fractional energy loss for a 20-keV X-ray scattered from an electron at angle 180 and compare with 2E/E0. (b) Find the final energy for a 10-MeV gamma ray scattered from an electron at 180 and compare with E0/2.
1. X-rays are scattered from electrons in a carbon target. The measured wavelength shift is 0.00131...
1. X-rays are scattered from electrons in a carbon target. The measured wavelength shift is 0.00131 nm. Calculate the scattering angle. The speed of light is 3 × 108 m/s and Planck’s constant is 6.626 × 10?34 J · s. Answer in units of ? . 2. A 0.0011 nm photon scatters from a free electron. For what (photon) scattering angle will the recoiling electron and scattered photon have the same kinetic energy? The speed of light is 3 ×...
1. A _________________ _________ causes light rays from a distant source to converge to a _____________...
1. A _________________ _________ causes light rays from a distant source to converge to a _____________ ______________ 2. Charging by induction, a charged rod is brought near a neutral conductor: the electrons in the conductor redistribute such that there is a net positive charge away from the rod (T/F) 3. Electrical resistivity doesn’t change when temperature changes (T/F) 4. With a magnetic core, the total magnetic field is increased by a factor of 10^3 to 10^4 relative to the field...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT