Question

In: Physics

Two hockey pucks are moving to the right with puck 1 behind puck 2. Puck 1...

Two hockey pucks are moving to the right with puck 1 behind puck 2. Puck 1 is moving twice as fast as puck 2, but its mass is half that of puck 2. If puck 2's Vi is 8 m/s, then what is the velocity of each puck after they collide?

Solutions

Expert Solution

m1 = mass of puck 1 = m

m2 = mass of puck 2 = 2m

V1i = initial velocity of puck 1 = 16 m/s

V2i = initial velocity of puck 2 = 8 m/s

V1f = final velocity of puck 1

V2f = final velocity of puck 2

Using conservation of momentum

m1 v1i + m2 V2i = m1 V1f + m2 V2f

m (16) + (2m) (8) = m V1f + (2m) V2f

32 = V1f + 2 V2f

V1f = 32 - 2 V2f                               eq-1

Using conservation of kinetic energy ::

(0.5) m1 v21i + (0.5)m2 V22i = (0.5)m1 V21f + (0.5)m2 V22f

m (16)2 + (2m) (8)2 = m V21f + (2m) V22f

384 = (32 - 2 V2f)2 + 2 V22f                        using eq-1

V2f = 8 or 13.33

V1f = 32 - 2 V2f     

so V1f = 16 or 5.34 m/s


Related Solutions

Two identical pucks collide elastically on an air hockey table. Puck 1 was originally at rest;...
Two identical pucks collide elastically on an air hockey table. Puck 1 was originally at rest; puck 2 has an incoming speed of 7.96 m/s and scatters at an angle of 30° with respect to its incoming direction. What is the velocity (magnitude in m/s and direction in degrees counterclockwise from the +x-axis) of puck 1 after the collision? (Assume the +x-axis is to the right.) Magnitude: Direction:
The drawing shows a collision between two pucks on an air-hockey table. Puck A has a...
The drawing shows a collision between two pucks on an air-hockey table. Puck A has a mass of 0.0290 kg and is moving along the x axis with a velocity of +6.85 m/s. It makes a collision with puck B, which has a mass of 0.0580 kg and is initially at rest. The collision is not head-on. After the collision, the two pucks fly apart with the angles shown in the drawing. Find the speed of (a) puck A and...
Two pucks collide on an air hockey table. Puck A has a mass of 17.0 g...
Two pucks collide on an air hockey table. Puck A has a mass of 17.0 g and is initially traveling in the +x direction at 7.30 m/s. Puck B has a mass of 51.0 g and is initially at rest. After the pucks collide, puck A moves away at an angle of 42.0 degrees above the +x axis, while puck B travels at an angle of 38.0 degrees below the +x axis. 1. Calculate puck A's final speed. 2. Calculate...
The drawing shows a collision between two pucks on an air-hockey table. Puck A has a...
The drawing shows a collision between two pucks on an air-hockey table. Puck A has a mass of 0.22 kg and is moving along the x axis with a velocity of 5.80 m/s. It makes a collision with puck B, which has a mass of 0.44 kg and is initially at rest. After the collision, the two pucks fly apart with angles as shown in the drawing (? = 66° and ? = 32°). Find the final speed of puck...
The drawing shows a collision between two pucks on an air-hockey table. Puck A has a...
The drawing shows a collision between two pucks on an air-hockey table. Puck A has a mass of 0.0240 kg and is moving along the x axis with a velocity of +6.27 m/s. It makes a collision with puck B, which has a mass of 0.0480 kg and is initially at rest. The collision is not head-on. After the collision, the two pucks fly apart with the angles shown in the drawing. Find the speed of (a) puck A and...
Two identical pucks collide on an air hockey table. One puck was originally at rest. (a)...
Two identical pucks collide on an air hockey table. One puck was originally at rest. (a) If the incoming puck has a speed of 6.00 m/s and scatters to an angle of 30.0
Q1) Two identical pucks collide on an air hockey table. One puck was originally at rest....
Q1) Two identical pucks collide on an air hockey table. One puck was originally at rest. If the incoming puck has a speed of 6.50 m/s and scatters to an angle of 30.0º,what is the speed of the second puck after the collision? (You may use the result that θ1−θ2=90º for elastic collisions of objects that have identical masses.) Q2)A block of mass m = 3.0 kg, moving on a frictionless surface with a speed 2.9 m/s makes a perfectly...
A puck is moving on an air hockey table. Relative to an x, y coordinate system...
A puck is moving on an air hockey table. Relative to an x, y coordinate system at time t = 0 s, the x components of the puck's initial velocity and acceleration are v0x = +2.2 m/s anda. The y components of the puck's initial velocity and acceleration are and . Find (a) the magnitude v and (b) the direction ? of the puck's velocity at a time of . Specify the direction relative to the +x axis.x = +7.7...
Two pucks are sliding across a frictionless surface. Puck A has a mass of .330 kg...
Two pucks are sliding across a frictionless surface. Puck A has a mass of .330 kg and a velocity of 5.50 m/s in the x direction. puck be has a mss of .440 kg and a velocity of 6.60 m/s in the negative x direction. the pucks collide an bounce of each other. after the collision puck a has a velocity of 1.10 m/s in the positive y-direction. What are the x and y components of the velocity of puck...
A hockey puck of mass m1=155 g slides from left to right with an initial velocity...
A hockey puck of mass m1=155 g slides from left to right with an initial velocity of 21.5 m/s. It collides head on with a second puck of the same mass, m2=m1, moving in the opposite direction with velocity -25.5 m/s. They collide elastically head-on. After the collision, the velocity of m2 is:
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT